y= -x² + 4x - 3
Объяснение:
Построить график функции, это парабола cо смещённым центром, ветви параболы направлены вниз.
а)найти координаты вершины параболы:
х₀ = -b/2a = -4/-2 = 2
y₀ = -(2)²+4*2-3 = -4+8-3 = 1
Координаты вершины (2; 1)
б)Ось симметрии = -b/2a X = -4/-2 = 2
в)найти точки пересечения параболы с осью Х, нули функции:
y= -x²+ 4x - 3
-x²+ 4x - 3=0
x²- 4x + 3=0, квадратное уравнение, ищем корни:
х₁,₂ = (4±√16-12)/2
х₁,₂ = (4±√4)/2
х₁,₂ = (4±2)/2
х₁ = 1
х₂ = 3
Координаты нулей функции (1; 0) (3; 0)
г)Найти точки пересечения графика функции с осью ОУ.
Нужно придать х значение 0: у= -0+0-3=-3
Также такой точкой является свободный член уравнения c, = -3
Координата точки пересечения (0; -3)
д)для построения графика нужно найти ещё несколько
дополнительных точек:
х=-1 у= -8 (-1; -8)
х= 0 у= -3 (0; -3)
х=4 у= -3 (4;-3)
х= 5 у= -8 (5;-8)
Координаты вершины параболы (2; 1)
Координаты точек пересечения параболы с осью Х: (1; 0) (3; 0)
Координаты дополнительных точек: (-1; -8) (0; -3) (4;-3) (5;-8)
e)В первой, третьей и четвёртой четвертях.
пусть событие f - произошло одно попадение в цель.
обозначим соссособытия:
а1- оба охотника не попали в цель
а2- оба охотника попали в цель
а3- 1й охотник попал в цель, 2й нет
а4- 2й охотник попал в цель, 1й нет
в нашем случае надо будет найти как раз вероятность а4.
найдем вероятности гипотез и условные вероятности события f для этих гипотез:
p(а1)= 0,8*0,4=0,32 р_a1 (f) = 0
р(а2)=0,2*0,6=0,12 р_a2 (f) = 0
р(а3)=0,2*0,4=0,08 р_a3 (f) = 1
р(а4)=0,6*0,8=0,48 р_a4 (f) = 1
можно по формуле байеса:
р_f (а4) = (0,48*1) / (0,32*0 + 0,12*0 + 0,08*1 + 0,48*1) = ~ 0.857
y= -x² + 4x - 3
Объяснение:
Построить график функции, это парабола cо смещённым центром, ветви параболы направлены вниз.
а)найти координаты вершины параболы:
х₀ = -b/2a = -4/-2 = 2
y₀ = -(2)²+4*2-3 = -4+8-3 = 1
Координаты вершины (2; 1)
б)Ось симметрии = -b/2a X = -4/-2 = 2
в)найти точки пересечения параболы с осью Х, нули функции:
y= -x²+ 4x - 3
-x²+ 4x - 3=0
x²- 4x + 3=0, квадратное уравнение, ищем корни:
х₁,₂ = (4±√16-12)/2
х₁,₂ = (4±√4)/2
х₁,₂ = (4±2)/2
х₁ = 1
х₂ = 3
Координаты нулей функции (1; 0) (3; 0)
г)Найти точки пересечения графика функции с осью ОУ.
Нужно придать х значение 0: у= -0+0-3=-3
Также такой точкой является свободный член уравнения c, = -3
Координата точки пересечения (0; -3)
д)для построения графика нужно найти ещё несколько
дополнительных точек:
х=-1 у= -8 (-1; -8)
х= 0 у= -3 (0; -3)
х=4 у= -3 (4;-3)
х= 5 у= -8 (5;-8)
Координаты вершины параболы (2; 1)
Координаты точек пересечения параболы с осью Х: (1; 0) (3; 0)
Координаты дополнительных точек: (-1; -8) (0; -3) (4;-3) (5;-8)
e)В первой, третьей и четвёртой четвертях.
пусть событие f - произошло одно попадение в цель.
обозначим соссособытия:
а1- оба охотника не попали в цель
а2- оба охотника попали в цель
а3- 1й охотник попал в цель, 2й нет
а4- 2й охотник попал в цель, 1й нет
в нашем случае надо будет найти как раз вероятность а4.
найдем вероятности гипотез и условные вероятности события f для этих гипотез:
p(а1)= 0,8*0,4=0,32 р_a1 (f) = 0
р(а2)=0,2*0,6=0,12 р_a2 (f) = 0
р(а3)=0,2*0,4=0,08 р_a3 (f) = 1
р(а4)=0,6*0,8=0,48 р_a4 (f) = 1
можно по формуле байеса:
р_f (а4) = (0,48*1) / (0,32*0 + 0,12*0 + 0,08*1 + 0,48*1) = ~ 0.857