Постройте график функции y=0,5+2 по графику найдите: а) y, если x=2 б) x, если y=2 в) точки пересечения с осями координат; г) принадлежит ли графику т а (10,-7)
Приравняв этот многочлен к 0, получим квадратное уравнение. Сумма его корней x1+x2=-(2*a+1)/a, а их произведение x1*x2=(a+1)/a. Пусть x1/x2=1/2, тогда x2=2*x1. Отсюда получаем систему уравнений:
3*x1=-(2*a+1)/a 2*x1²=(a+1)/a
Из первого уравнения находим x1=-(2*a+1)/(3*a), тогда x1²=(4*a²+4*a+1)/(9*a²), а 2*x1²=(8*a²+8*a+2)/(9*a²). Подставляя это выражение во второе уравнение, получаем уравнение (8*a²+8*a+2)/(9*a²)=(a+1)/a, или a*(8*a²+8*a+2)=9*a²*(a+1), или 8*a³+8*a²+2*a=9*a³+9*a², или a³+a²-2*a=a*(a²+a-2)=0. Одним из решений является a=0, но это решение не годится, т.к. при a=0 исходное уравнение является линейным, а не квадратным и потому имеет лишь 1 корень .Решая уравнение a²+a-2=0, находим a=-2 и a=1. ответ: при a=-2 и при a=1.
Здесь опять есть нюанс, связанный с тем, что же все-таки мы считаем числителем и знаменателем новой дроби. Если мы новой дробью считаем дробь с числителем 2а+b и знаменателем a(a+b), то такая дробь несократима.
Предположим, противоположное, что 1/a+1/(a+b)=(2а+b)/(a(a+b)) сократима, т.е. 2а+b и a(a+b) делятся на некоторое простое число q. Т.к. q - простое и произведение а(a+b) на него делится, то либо а, либо a+b делится на q. 1) Пусть a делится на q. В силу равенства b=(2a+b)-2a, получаем, что b тоже делится на q, а значит дробь a/b - сократима. Противоречие. 2) Если а+b делится на q, то в силу равенств а=(2a+b)-(a+b) и b=2(a+b)-(2a+b), получаем, что а и b тоже делятся на q и дробь а/b сократима. Противоречие. Таким образом, дробь (2а+b)/(a(a+b)) несократима.
3*x1=-(2*a+1)/a
2*x1²=(a+1)/a
Из первого уравнения находим x1=-(2*a+1)/(3*a), тогда
x1²=(4*a²+4*a+1)/(9*a²), а 2*x1²=(8*a²+8*a+2)/(9*a²). Подставляя это выражение во второе уравнение, получаем уравнение
(8*a²+8*a+2)/(9*a²)=(a+1)/a, или a*(8*a²+8*a+2)=9*a²*(a+1), или
8*a³+8*a²+2*a=9*a³+9*a², или a³+a²-2*a=a*(a²+a-2)=0. Одним из решений является a=0, но это решение не годится, т.к. при a=0 исходное уравнение является линейным, а не квадратным и потому имеет лишь 1 корень .Решая уравнение
a²+a-2=0, находим a=-2 и a=1. ответ: при a=-2 и при a=1.
Предположим, противоположное, что 1/a+1/(a+b)=(2а+b)/(a(a+b)) сократима, т.е. 2а+b и a(a+b) делятся на некоторое простое число q. Т.к. q - простое и произведение а(a+b) на него делится, то либо а, либо a+b делится на q.
1) Пусть a делится на q. В силу равенства b=(2a+b)-2a, получаем, что b тоже делится на q, а значит дробь a/b - сократима. Противоречие.
2) Если а+b делится на q, то в силу равенств
а=(2a+b)-(a+b) и b=2(a+b)-(2a+b), получаем, что а и b тоже делятся на q и дробь а/b сократима. Противоречие. Таким образом, дробь (2а+b)/(a(a+b)) несократима.