1) Оценим сумму , для этого примем что есть равные числа. Так как есть место для чисел 3 4 и 6 это 3 числа.
то есть да может , так как ее целая часть равна 3 , а она натуральное число , и найдется набор таких чисел что среднее арифметическое будет меньше 2 , так как в условий не сказано что , сам набор может состоят так только из разных натуральных чисел. 2) , целая часть этого числа равна , то есть не может , так как в сумме , и по количеству в этом наборе минимальное есть 16 единиц . 3) так как мы ранее доказали что , есть не менее 16 единиц , и того что удовлетворяет условию .
то есть да может , так как ее целая часть равна 3 , а она натуральное число , и найдется набор таких чисел что среднее арифметическое будет меньше 2 , так как в условий не сказано что , сам набор может состоят так только из разных натуральных чисел.
2) , целая часть этого числа равна , то есть не может , так как в сумме , и по количеству в этом наборе минимальное есть 16 единиц .
3) так как мы ранее доказали что , есть не менее 16 единиц , и того что удовлетворяет условию .
скорость лодки Х скорость по течению Х+1,3
скорость против течения Х-1,3
за 4 часа по течению пройдено 4*(х+1,3)
а за 5 часов против течения пройдено 5*(х-1,3) известно,что против течения пройдено на 8,3 больше. уравнение
4*(х+1,3) +8,3=5*(х-1,3)
4х+5,2+8,3=5х-6,5
13,5+6,5=х
20=х
путь по течению равен (20+1,3)*4=85,2 км пройдено по течению.
путь время скорость
4(х+1,3) 4 по Х+1,3
5(х-1,3) 5 против х-1,3
4*(х+1,3) +8,3=5*(х-1,3)