Как ты возможно помнишь, количество корней квадратного уравнения зависит от дискриминанта. Уравнение имеет не более 1 корня - это значит, что оно может иметь как один корень, так и не иметь их вовсе. Если D=0,то квадратное уравение имеет один корень, если же D<0, то квадратное уравнение вообще не имеет корней.
Следовательно, необходимо решить неравенство D≤0. Для этого из приведённого уравнения выделю дискриминант. Чтобы было проще выделять его, выпишу значения основных коэффициентов:
a= 3/8; b = p;c = -2p;
D = b²-4ac = p² + 3p;
Составлю неравенство p²+3p≤0 и решу его:
p(p+3)≤0
Решая его методом интервалов, получаю следующий ответ:
[-3;0].
Следовательно, условию задачи удовлетворяют следующие p: -3;-2;-1;0. Задача решена )
тогда скорость по течению х+1 и за 3 часа пройдено 3(x+1) км.
против течения скорость х-1 и за 4 часа пройдено 4(х-1) км.
приравниваем, получаем ур-е
3(х+1) = 4(х-1)
х = 7 (км/ч)
V собственная ? Х км/ч
V течения реки 1 км/ч
V по течению реки = V собственная + Vреки
V против течения реки = Vсобственная - V реки
Пусть х км/ч – собственная скорость, (х+1)км/ч скорость по течению реки,(х-1) км/ч скорость против течения реки.за 3 часа пройдено 3(x+1) км,а за 4 часа пройдено 4(х-1) км.
Известно, что расстояние по течению и против течения одинаковое.
Как ты возможно помнишь, количество корней квадратного уравнения зависит от дискриминанта. Уравнение имеет не более 1 корня - это значит, что оно может иметь как один корень, так и не иметь их вовсе. Если D=0,то квадратное уравение имеет один корень, если же D<0, то квадратное уравнение вообще не имеет корней.
Следовательно, необходимо решить неравенство D≤0. Для этого из приведённого уравнения выделю дискриминант. Чтобы было проще выделять его, выпишу значения основных коэффициентов:
a= 3/8; b = p;c = -2p;
D = b²-4ac = p² + 3p;
Составлю неравенство p²+3p≤0 и решу его:
p(p+3)≤0
Решая его методом интервалов, получаю следующий ответ:
[-3;0].
Следовательно, условию задачи удовлетворяют следующие p: -3;-2;-1;0. Задача решена )
пусть х км в час - собственная скорость лодки
тогда скорость по течению х+1 и за 3 часа пройдено 3(x+1) км.
против течения скорость х-1 и за 4 часа пройдено 4(х-1) км.
приравниваем, получаем ур-е
3(х+1) = 4(х-1)
х = 7 (км/ч)
V собственная ? Х км/ч
V течения реки 1 км/ч
V по течению реки = V собственная + Vреки
V против течения реки = Vсобственная - V реки
Пусть х км/ч – собственная скорость, (х+1)км/ч скорость по течению реки,(х-1) км/ч скорость против течения реки.за 3 часа пройдено 3(x+1) км,а за 4 часа пройдено 4(х-1) км.
Известно, что расстояние по течению и против течения одинаковое.
Составляем уравнение.
3(х+1) = 4(х-1)
3х+3 = 4х-4
3х-4х = -4-3
-х = -7
х =7
х = 7 (собственная скорость)
ответ: Собственная скорость 7 км/ч,