5*|tg(x)|+3*|ctg(x)|>=2√15 (из соображений полного квадрата и положительности каждого из членов |tg(x)|*|ctg(x)|=1)
Рассмотрим случай когда : a<-2√15
В этом случае числитель будет отрицателен при любом x:
a-(2^(x-3) +4)<0
Знаменатель же ,будет положителен не всегда, тк при каком нибудь x обязательно найдется значение 5*|tg(x)|+3*|ctg(x)|>a ,тк оно имеет область значений от 2√15 до бесконечности) . То есть в зависимости от x, может быть как и положителен так и отрицателен. Вывод: при a<-2√15 будут существовать решения неравенства.
Рассмотрим случай когда: a>4
Тут ситуация иная:
Знаменатель тут всегда положителен,а вот числитель не всегда отрицателен,то есть решения так же будут существовать .
Наконец рассмотрим случай когда:
-2√15<=a<=4
В этом случае числитель всегда отрицателен (при любом x), а знаменатель же наоборот будет неотрицателен. Таким образом только на этом интервале неравенство не будет иметь решения не для какого x. Тк отношение числителя и знаменателя всегда будет отрицательным. P.S Не у кого тут нет вопросов почему строгое неравенство для -2√15(знаменателю быть равным нулю не запрещается,тк наша цель отсутствие решений). Почему же строгое и для 4, а дело все в том ,что: 2^(x-3) +4≠4 , а только стремится к нему при стремлении x к бесконечности,поэтому опасаться за равенство нулю числителя не стоит.
Доведення 1.
0=0
10−10=15−15
10−6−4=15−9−6
2(5−3−2)=3(5−3−2)
скорочуємо одинакові множники
2=3
2+2=3+2
2+2=5
Доведення 2.
1=1
4
4
=
5
5
4·
1
1
=5·
1
1
оскільки
1
1
=
1
1
, то 4=5
А звідси 2+2=5
Доведення 3.
−20=−20
16−36=25−45
16−36+20.25=25−45+20.25
(4−4.5)2=(5−4.5)2
4−4.5=5−4.5
4=5
2+2=5
Доведення 4.
a=b
ab=b2
ab−a2=b2−a2
a(b−a)=(b+a)(b−a)
a=b+a, оскільки b=a, то
a=a+a
a=2a
1=2
звідси очевидним чином випливає, що
1=2 ⇒ 1+3=2+3 ⇒ 4=5 ⇒ 2+2=5
Доведення 5 (для тих хто вчив вищу математику).
Візьмемо інтеграл частинами згідно формул інтегрування частинами:
∫
1
x
dx=[\tableu=
1
x
;du=−
1
x2
dx;dv=dx;v=x]=
1
x
x−∫−
1
x2
xdx=1+∫
1
x
dx
Нехай ∫
1
x
dx=θ, тоді
θ=1+θ
0=1 ⇒ 0+4=1+4 ⇒ 4=5 ⇒ 2+2=5
Заметим ,что наименьшие значения функций:
2^(x-3) +4>4
5*|tg(x)|+3*|ctg(x)|>=2√15 (из соображений полного квадрата и положительности каждого из членов |tg(x)|*|ctg(x)|=1)
Рассмотрим случай когда : a<-2√15
В этом случае числитель будет отрицателен при любом x:
a-(2^(x-3) +4)<0
Знаменатель же ,будет положителен не всегда, тк при каком нибудь x обязательно найдется значение 5*|tg(x)|+3*|ctg(x)|>a ,тк оно имеет область значений от 2√15 до бесконечности) . То есть в зависимости от x, может быть как и положителен так и отрицателен. Вывод: при a<-2√15 будут существовать решения неравенства.
Рассмотрим случай когда: a>4
Тут ситуация иная:
Знаменатель тут всегда положителен,а вот числитель не всегда отрицателен,то есть решения так же будут существовать .
Наконец рассмотрим случай когда:
-2√15<=a<=4
В этом случае числитель всегда отрицателен (при любом x), а знаменатель же наоборот будет неотрицателен. Таким образом только на этом интервале неравенство не будет иметь решения не для какого x. Тк отношение числителя и знаменателя всегда будет отрицательным. P.S Не у кого тут нет вопросов почему строгое неравенство для -2√15(знаменателю быть равным нулю не запрещается,тк наша цель отсутствие решений). Почему же строгое и для 4, а дело все в том ,что: 2^(x-3) +4≠4 , а только стремится к нему при стремлении x к бесконечности,поэтому опасаться за равенство нулю числителя не стоит.
Таким образом
ответ: a∈[-2√15;4]