Ну алгоритм не алгоритм, а принцип построения поясню. Во первых слева дополнительное слагаемое +1 "сдвигает" график исходной функции на одну единицу вверх вдоль (параллелно) оси OY. График "поднимается" . (Если бы было -1, график исходной функции сдвинулся бы на 1 вниз).
Вообще,чтобы получить график функции f(x)+B, исходный график нужно сместить на B единиц вверх (при B>0), или вниз ( при B<0).
Далее График функции y=f(x+C) получается из исходного графика функции y=f(x) путем сдвига его вправо (С<0) или влево (C>0) на C единиц.
Т.е. в нашем случае нам нужно сдвинуть исходный график y=x^2 на 1 единицу вверх и на 2 единицы вправо. Ну и коэффициент a при х^2 "растягивает" или "сжимает" график к вертикальной оси. Может даже "Зеркально отразить" исходный график (при a=-1).
Чтобы из исходного графика y=x^2 получить график y=a*x^2 нужно координаты всех его точек (на практике только нескольких опорных пересчитать по следующему принципу (x, a*x^2). Т.е координата X, выбранной точки не меняется, а координату Y надо умножить на a.
P.S. В свое время в учебниках что-то подобное писали, недавно я встречал подобные и более подробные рассуждения в книге: Зельдович Я. Б. "Высшая математика для начинающих и ее приложения к физике"
Во первых слева дополнительное слагаемое +1 "сдвигает" график исходной функции на одну единицу вверх вдоль (параллелно) оси OY. График "поднимается" .
(Если бы было -1, график исходной функции сдвинулся бы на 1 вниз).
Вообще,чтобы получить график функции f(x)+B, исходный график нужно сместить на B единиц вверх (при B>0), или вниз ( при B<0).
Далее
График функции y=f(x+C) получается из исходного графика функции y=f(x) путем сдвига его вправо (С<0) или влево (C>0) на C единиц.
Т.е. в нашем случае нам нужно сдвинуть исходный график y=x^2 на 1 единицу вверх и на 2 единицы вправо.
Ну и коэффициент a при х^2 "растягивает" или "сжимает" график к вертикальной оси.
Может даже "Зеркально отразить" исходный график (при a=-1).
Чтобы из исходного графика y=x^2 получить график y=a*x^2
нужно координаты всех его точек (на практике только нескольких опорных пересчитать по следующему принципу
(x, a*x^2). Т.е координата X, выбранной точки не меняется, а координату Y надо умножить на a.
P.S. В свое время в учебниках что-то подобное писали, недавно я встречал подобные и более подробные рассуждения в книге:
Зельдович Я. Б. "Высшая математика для начинающих и ее приложения к физике"
Раскрываем скобки и подводим подобные слагаемые:
6х^2 - 3х + 8х - 4 - 6x^2 = 16;
5х - 4 = 16;
5х = 16 + 4;
5х = 20;
х = 20/5 = 4.
2) (1 - 2y)(1 - 3y) = (6y - 1)y - 1.
Раскрываем скобки:
1 - 2у - 3у + 6у^2 = 6у^2 - у - 1;
1 - 5у + 6у^2 = 6у^2 - у - 1;
Перенесем буквенные одночлены в левую часть, а числовые - в правую:
-5у + 6у^2 - 6у^2 + у = -1 - 1;
-4У = -2;
У = (-2)/(-4) = 1/2 = 0,5.
3) 7 + 2x^2 = 2(x + 1)(x + 3).
Раскрываем скобки:
7 + 2x^2 = 2(x^2 + x + 3x + 3);
7 + 2x^2 = 2(x^2 + 4x + 3);
7 + 2x^2 = 2x^2 + 8х + 6;
перенесем буквенные одночлены в левую часть, а числовые - в правую:
2x^2 - 2x^2 - 8х = 6 - 7;
-8х = -1;
х = 1/8.
4) (y + 4)(y + 1) = y - (y - 2)(2 - y).
Раскрываем скобки и подводим подобные слагаемые:
y^2 + 4y + у + 4 = y - (2y - 4 - y^2 + 2у);
y^2 + 5у + 4 = y - (4y - 4 - y^2);
y^2 + 5у + 4 = y - 4y + 4 + y^2;
y^2 + 5у + 4 = -3y + 4 + y^2;
перенесем буквенные одночлены в левую часть уравнения, а числовые - в правую:
y^2 + 5у + 3y - y^2 = 4 - 4;
8у = 0;
у = 0.