Воспользуемся уравнением для пучка прямых, проходящих через заданную точку для того, чтобы найти угловой коэффициент и точку пересечения с осью Y.
Нажмите, чтобы увидеть больше шагов...
Угловой коэффициент:
6
пересечение с осью Y:
1
Любую прямую можно построить при двух точек. Выберем два значения
x
и подставим их в уравнение, чтобы определить соответствующие значения
y
0
7
Построим прямую с углового коэффициента и пересечения с осью Y или опираясь на две точки прямой.
Нарисуй лучше сам а то потом сложно будет рисовать. Я тебе решение написал так что это за
Воспользуемся уравнением для пучка прямых, проходящих через заданную точку для того, чтобы найти угловой коэффициент и точку пересечения с осью Y.
Нажмите, чтобы увидеть больше шагов...
Угловой коэффициент:
6
пересечение с осью Y:
1
Любую прямую можно построить при двух точек. Выберем два значения
x
и подставим их в уравнение, чтобы определить соответствующие значения
y
x
y
0
1
1
7
Построим прямую с углового коэффициента и пересечения с осью Y или опираясь на две точки прямой.
Угловой коэффициент:
6
пересечение с осью Y:
1
x
y
0
1
1
7
Нарисуй лучше сам а то потом сложно будет рисовать. Я тебе решение написал так что это за
1) Производная = 4х³ -12х²-16х
2) 4х³ - 12х² -16 х = 0
х( 4х² -12х -16) = 0
х = 0 или 4х² -12х -16 = 0
х² - 3х - 4 = 0
х = 4 х = -1
проверим знак производной на каждом промежутке
3) -∞ - -1 + 0 - 4 + +∞
х = -1 - это точка минимума
х = 0 -это точка максимума
х = 4 - это точка минимума
б) у =х + 4/х
1) Производная = 1 - 4/х² = (х² - 4)/х²
2) (х² - 4)/х² = 0 (х≠0)
х² - 4 = 0
х² = 4
х = +-2
проверим знак производной на каждом промежутке
-∞ + -2 - 0 - 2 + +∞
х = -2 - это точка максимума
х = 2 - это точка минимума
3) у = х - 2√х -2)
производная = 1 - 1/√х -2)
Найдём критические точки:
1 - 1/√(х - 2) = 0
(√х - 2) - 1)/√(х -2)= 0
√( х -2) - 1 = 0 ⇒ √(х - 2 = 1|² ⇒х - 2 = 1 ⇒х = 3
х больше 2
2 - 3 + +∞
х = 3 - это точка минимума.