50 км/ч.
Объяснение:
300 : 3 = 100 (км) - проехал поезд до остановки.
300 - 100 = 200 (км) - проехал поезд после остановки.
Пусть х км/ч - скорость поезда до остановки,
тогда (х - 10) км/ч - скорость поезда после остановки.
Составим уравнение:
100(x - 10) + 200х + х(х - 10) =8х(х - 10)
100х - 1000 + 200х + х² - 10х = 8х² - 80х
8х² - х² + 10х - 80х - 100х - 200х + 1000 = 0
7х² - 370х + 1000 = 0
D = (- 370)² - 4 * 7 * 1000 = 136900 - 28000 = 108900 = 330²
Второй корень не подходит, так как имея такую скорость, поезд не смог бы её сбросить на 10 км/ч.
Значит, скорость поезда до остановки была 50 км/ч.
В решении.
Побудуйте графік функції y=x²-4x-5. Користуючись графіком, знайдіть:
1) Найменше значення функції;
2) Множину розв'язків нерівності x²-4x-5>0;
3) Проміжок, на якому функція y=x²-4x-5 зростає.
Постройте график функции y = x² - 4x - 5.
Пользуясь графиком, найдите:
1) Наименьшее значение функции;
2) Множество решений неравенства x²- 4x - 5 > 0;
3) Промежуток, на котором функция y = x² - 4x - 5 возрастает.
Придать значения х, подставить в уравнение, вычислить значения у, записать в таблицу, построить по точкам график.
График квадратичной функции, парабола со смещённым центром, ветви направлены вверх.
Таблица:
х -2 -1 0 1 2 3 4 5 6
у 7 0 -5 -8 -9 -8 -5 0 7
1) Наименьшее значение функции определяется ординатой её вершины. Согласно графика, наименьшее значение у = -9.
2) x²- 4x - 5 > 0;
Приравнять к нулю:
x²- 4x - 5 = 0
Уравнение квадратичной функции, ветви направлены вверх, пересекают ось Ох при х = -1 и х = 5.
Решение неравенства: х∈(-∞; -1)∪(5; +∞).
Неравенство строгое, скобки круглые.
3) Функция возрастает при х∈(2; +∞).
На промежутке от х = 2 до + бесконечности.
50 км/ч.
Объяснение:
300 : 3 = 100 (км) - проехал поезд до остановки.
300 - 100 = 200 (км) - проехал поезд после остановки.
Пусть х км/ч - скорость поезда до остановки,
тогда (х - 10) км/ч - скорость поезда после остановки.
Составим уравнение:
100(x - 10) + 200х + х(х - 10) =8х(х - 10)
100х - 1000 + 200х + х² - 10х = 8х² - 80х
8х² - х² + 10х - 80х - 100х - 200х + 1000 = 0
7х² - 370х + 1000 = 0
D = (- 370)² - 4 * 7 * 1000 = 136900 - 28000 = 108900 = 330²
Второй корень не подходит, так как имея такую скорость, поезд не смог бы её сбросить на 10 км/ч.
Значит, скорость поезда до остановки была 50 км/ч.
В решении.
Объяснение:
Побудуйте графік функції y=x²-4x-5. Користуючись графіком, знайдіть:
1) Найменше значення функції;
2) Множину розв'язків нерівності x²-4x-5>0;
3) Проміжок, на якому функція y=x²-4x-5 зростає.
Постройте график функции y = x² - 4x - 5.
Пользуясь графиком, найдите:
1) Наименьшее значение функции;
2) Множество решений неравенства x²- 4x - 5 > 0;
3) Промежуток, на котором функция y = x² - 4x - 5 возрастает.
Придать значения х, подставить в уравнение, вычислить значения у, записать в таблицу, построить по точкам график.
График квадратичной функции, парабола со смещённым центром, ветви направлены вверх.
Таблица:
х -2 -1 0 1 2 3 4 5 6
у 7 0 -5 -8 -9 -8 -5 0 7
1) Наименьшее значение функции определяется ординатой её вершины. Согласно графика, наименьшее значение у = -9.
2) x²- 4x - 5 > 0;
Приравнять к нулю:
x²- 4x - 5 = 0
Уравнение квадратичной функции, ветви направлены вверх, пересекают ось Ох при х = -1 и х = 5.
Решение неравенства: х∈(-∞; -1)∪(5; +∞).
Неравенство строгое, скобки круглые.
3) Функция возрастает при х∈(2; +∞).
На промежутке от х = 2 до + бесконечности.