Пусть l - длина отрезка, соединяющего середины диагоналей трапеции. Этот отрезок лежит на средней линии трапеции и равен полуразности её оснований. Пусть a и b - основания трапеции, причём a>b, а c - длина средней линии трапеции. Так как по условию диагонали трапеции делят её среднюю линию на 3 равных части, то l=c/3. Отсюда c=3*l=3*6=18 см и, так как c=(a+b)/2, то мы получаем систему уравнений:
ответ: 24 см и 12 см.
Объяснение:
Пусть l - длина отрезка, соединяющего середины диагоналей трапеции. Этот отрезок лежит на средней линии трапеции и равен полуразности её оснований. Пусть a и b - основания трапеции, причём a>b, а c - длина средней линии трапеции. Так как по условию диагонали трапеции делят её среднюю линию на 3 равных части, то l=c/3. Отсюда c=3*l=3*6=18 см и, так как c=(a+b)/2, то мы получаем систему уравнений:
(a-b)/2=6
(a+b)/2=18
или:
a-b=12
a+b=36
Решая её, находим a=24 см и b=12 см.
Преобразуем выражения, воспользовавшись следующими свойствами степеней:
а^c * b^c = (ab)^c,
(a^b)^c = a^(bc),
a^b * a^c = a^(b + c).
x * x^3 * x * x^7 = x^(1 + 3 + 1 + 7) = x^12.
(-2a)^2 * (-2a) * (-2a)^5 = (-2a)^(2 + 1 + 5) = (-2a)^8 = (-1)^8 * 2^8 = 1 * 2^8 = 2^8.
c^m * c * c^2 * c^(m+1) * c = c^(m + 1 + 2 + m + 1 + 1) = c^(2m + 5).
5 * 125 * 25 = 5 * 5^3 * 5^2 = 5^(1 + 3 + 2) = 5^6.
8 * 32 * 16 = 2^3 * 2^5 * 2^4 = 2^(3 + 5 + 4) = 2^12.
3^n * 27 * 3^(n – 4) * 9 = 3^n * 3^3 * 3^(n – 4) * 3^2 = 3^(n + 3 + n – 4 + 2) = 3^(2n + 1).