В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Элизия12
Элизия12
08.09.2022 20:06 •  Алгебра

Постройте график функции y=|x-1|-|x+1|+x и найдите все значения k, при которых прямая y=kx имеет с графиком данной функции ровно одну общую точку.

Показать ответ
Ответ:
ВикаKull
ВикаKull
01.10.2020 23:13
f(x)=|x-1|-|x+1|+x
Обзозначим график функции, как ломаную линию с отрезками
 [CA]-[AB]-[BD] (cм. чертеж во вложении), где [AB] пересекает точку начала координат О: [AO]=(OB],
[CA] II [BD], т.к. A(-1;1) B(-3;-1)
                          C(-3;-1) D(3;1)
Вычислим k прямой y=kx, проходящей через точки А и В:
А(-1;1) => 1=k*(-1) => k=-1
     Вложение: таблицы и графики
B(1;-1) => -1=k*1 => k=-1
     Прямая а, проходящая через точки А,О,В имеет вид у=-х
Прямая b, параллельная [AC] и [BD]  и перпендикулярная прямой а,
имеет вид у=х (k=1).
     В уравнении у=kx которая имеет с графиком данной функции только одну общую точку, k≠-1; k≠0; k≤1
k∈(-1;0)∪(0;1]


Постройте график функции y=|x-1|-|x+1|+x и найдите все значения k, при которых прямая y=kx имеет с г
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота