В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Gelia1111
Gelia1111
02.05.2020 17:13 •  Алгебра

Постройте график функции y=x^2-|x|/x
С полным решением

Показать ответ
Ответ:
AliseNikylina
AliseNikylina
16.11.2022 14:56

1) -х³ + 3х² + х +1

3) 3х³ +10х² +4х —2

Объяснение:

Многочленом стандартного вида называют многочлен, у которого каждый входящий в него член имеет одночлен стандартного вида и не содержит подобных членов.

1) (х-1)² - х(х+1)(х-3) =

=х² + 1² —2*х*1 - х*(х*х + 1*х +х*(-3) +1*(-3)) =

=х² +1 — 2х - х*(х² + х — 3х —3) =

=х² +1 — 2х - х*(х² — 2х —3) =

=х² +1 — 2х - х*х² - х*(-2х) +х*3 =

=х² +1 — 2х - х³ +2х² +3х=

=-х³ + 3х² + х +1

3) (х-2)² + 3(х+1)³ - (х+9) =

= х² + 2² —2*2*х +

+ 3*(х³ +3*х²*1 +3*х*1² +1³) -

- 1*х —1*9=

= х² +4 —4х +3(х³ +3х² +3х +1) —х —9 =

= х² —5 —5х +3(х³ +3х² +3х +1) =

= х² —5 —5х +3*х³ +3*3х² +3*3х +3*1 =

= х² —5 —5х +3х³ +9х² +9х +3 =

= 3х³ +10х² +4х —2

0,0(0 оценок)
Ответ:
Elmir03042003
Elmir03042003
02.11.2021 06:20

Задача 1.

В группе 30 студентов. Необходимо выбрать старосту, заместителя старосты и профорга. Сколько существует это сделать?

Решение. Старостой может быть выбран любой из 30 студентов, заместителем - любой из оставшихся 29, а профоргом – любой из оставшихся 28 студентов, т.е. n1=30, n2=29, n3=28. По правилу умножения общее число выбора старосты, его заместителя и профорга равно     N=n1n2n3=302928=24360.

Задача 2.

Два почтальона должны разнести 10 писем по 10 адресам. Сколькими они могут распределить работу?

Решение. Первое письмо имеет n1=2 альтернативы – либо его относит к адресату первый почтальон, либо второй. Для второго письма также есть n2=2 альтернативы и т.д., т.е. n1=n2=…=n10=2. Следовательно, в силу правила умножения общее число распределений писем между двумя почтальонами равно .

Задача  3.

В ящике 100 деталей, из них 30 – деталей 1-го сорта, 50 – 2-го, остальные – 3-го. Сколько существует извлечения из ящика одной детали 1-го или 2-го сорта?

Решение. Деталь 1-го сорта может быть извлечена го сорта По правилу суммы существует извлечения одной детали 1-го или 2-го сорта.  

Задача 4.  

Порядок выступления 7 участников конкурса определяется жребием. Сколько различных вариантов жеребьевки при этом возможно?

Решение. Каждый вариант жеребьевки отличается только порядком участников конкурса, т.е. является перестановкой из 7 элементов. Их число равно

Задача 5.

В конкурсе по 5 номинациям участвуют 10 кинофильмов. Сколько существует вариантов распределения призов, если по всем номинациям установлены различные премии?

Решение. Каждый из вариантов распределения призов представляет собой комбинацию 5 фильмов из 10, отличающуюся от других комбинаций, как составом, так и их порядком. Так как каждый фильм может получить призы как по одной, так и по нескольким номинациям, то одни и те же фильмы могут повторяться. Поэтому число таких комбинаций равно числу размещений с повторениями из 10 элементов по 5:  

Задача  6.  

В шахматном турнире  участвуют 16 человек. Сколько партий должно быть сыграно в турнире, если между любыми двумя участниками должна быть сыграна одна партия?

Решение. Каждая партия играется двумя участниками из 16 и отличается от других только составом пар участников, т.е. представляет собой сочетания из 16 элементов по 2. Их число равно  

Вот надеюсь если не правильно напиши в комментариях (толь нужно будет написать где неправильно и почему)

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота