В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
vitalicc
vitalicc
01.04.2020 17:27 •  Алгебра

Постройте график функции y=x^3-3x^2+6. исследовать через производную .

Показать ответ
Ответ:
Anyta31107
Anyta31107
12.06.2020 22:25
Исследовать функцию:
у(x)=x^3/3-x^2+6
1. Область определения функции (-бесконечность;бесконечность)
2. Множество значений функции (-бесконечность;бесконечность)
3. Проверим, является ли функция четной или не четной?
у(x)=x^3/3-x^2+6
у(-x)=(-x)^3/3-(-x)^2+6=-x^3/3-x^2+6, так как у(x) не=у(-x) и у(-x) не=-у(x), то данная функция не является ни четной ни не четной.
4. Найдем координаты точек пересечения графика функции с осями координат:
а) с осью ОХ: у=0, x^3/3-x^2+6=0, данное уравнение не имеет рационального корня, а корень принадлежит промежутку (-2;-1)
б) с осью ОУ: х=0, тогда у=6. Следовательно график функции пересекает ось ординат в точке (0;6)
5) Найдем точки экстремума функции и промежутки возрастание и убывания:
у'(x)=x^2-2x; f'(x)=0
x^2-2x=0
x1=0
x2=2. Получили две стационарные точки, проверим их на экстремум:
Так как на промежутках (-бесконечность;0) и (2; бесконечность) у'(x)>0, то на этих промежутках функция возрастает.
Так как на промежутке (0;2) у'(x)<0, то на этом промежутке функция убывает.
Так как при переходе через точку х=0 производная меняет свой знак с + на - ,то в этой точке функция имеет максимум у(0)=0-0+6=6
Так как при переходе через точку х=2 производная меняет свой знак с - на + то в этой точке функция имеет минимуму у(2)=8/3-4+6=14/3
6. Найдем точки перегиба функции и промежутки выпуклости:
y"(x)=2x-2; y"(x)=0
2x-2=0
x=1
Так как на промежутке (-бесконечность; 1) y"(x)<0, то на этом промежутке нрафик функци направлен выпуклостью вверх.
Так как на промежутке (1;бесконечность) y"(x)>0, то на этом промежутке график функции направлен выпуклотью вниз
Так как при переходе через точку х=1 вторая производная меняет свой знак, то точка х=1 является точой перегиба. y(1)=1/3-1+6=16/3
7. проверим имеет данная функция асимптоты:
а) вертикальные
Так как точек разрыва функция не имеет, то она не имеет вертикальных асимптот.
б) наклонные вида у=kx+b
k=lim y(x)/x=lim((x^3/3-x^2+6)/x)= бесконечность 
Так как данный предел бесконечен, то график не имеет наклонных асимптот
8. все строй график ДУмаю это у меня у самогобыла акая проблема но вот писал
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота