Определение степени. Напомним, что произведение двух одинаковых чисел аа называется второю степенью (или квадратом) числа а, произведение трех одинаковых чисел ааа называется третьей степенью (или кубом) числа а; вообще произведение n одинаковых чисел аа... а называется n-ю степенью числа а. Действие, посредством которого находится степень данного числа, называется возвышением в степень (вторую, третью и т. д.). Повторяющийся сомножитель называется основанием степени, а число одинаковых сомножителей называется показателем степени.
Сокращенно степени обозначаются так: а2, а3, а4... и т. д.
Мы сначала будем говорить о простейшем случае возвышения в степень, именно о возвышении в квадрат; а пoсле рассмотрим возвышение и в другие степени.
Сокращенно степени обозначаются так: а2, а3, а4... и т. д.
Мы сначала будем говорить о простейшем случае возвышения в степень, именно о возвышении в квадрат; а пoсле рассмотрим возвышение и в другие степени.
5sin²x-14sinxcosx-3cos²x-2=0
|2=2*1=2*(sin²x+cos²x)=2sin²x+2cos²x
=> 5sin²x-14sinxcosx-3cos²x-2sin²x-2cos²x=0
3sin²x-14sinxcosx-5cos²x=0 |cos²x(cosx≠0,иначе из уравнения следует,что и cosx=0,и sinx=0,что противоречит основному тригонометрическому тождеству).
3tg²x-14tgx-5=0
Замена tgx=a:
3a²-14a-5=0
D=196+60=256
a₁=(14-16)/6=-1/3
a₂=(14+16)/6=5
Обратная замена:
1)a₁=tgx
tgx=-1/3
x=arctg(-1/3)+πn=-arctg(1/3)+πn,n∈Z.
2)a₂=tgx
tgx=5
x=arctg(5)+πn,n∈Z.
ответ: x₁=-arctg(1/3)+πn
x₂=arctg(5)+πn , n∈Z.