В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Slobodenyuk21
Slobodenyuk21
25.12.2020 09:46 •  Алгебра

Постройте график функции, заданной формулой:


Постройте график функции, заданной формулой: ​

Показать ответ
Ответ:
ObolenskayaDiana
ObolenskayaDiana
15.01.2020 19:38
1)\frac{(11-3x)}{4}= \frac{1}{2} Умножаешь обе стороны на 4. Сокращается 4 слева и 2 справа. Остается 11-3x=2. Переносишь 2 налево от равно, при этом меняя знак на - . получаешь 11-2-3x=0. И переносишь x вправо от знака равно, также меняя знак с -, на плюс. Получаешь 11-2=3x
9=3x. делишь обе стороны на 3, получаешь x=3

2) \frac{3x+7}{5}= \frac{6x+4}{5} . Делаем по тому же принципу что и выше. Умножаем обе стороны на 5, чтобы сократить делитель. Остается 3x+7=6x+4. Меняем стороны, оставляя x c одной стороны, а числа с другой. При смене сторон не забываем менять знаки на противоположные.
Получаем 6x-3x=7-4 отсюда
3x=3 делим на 3 обе стороны и получаем, что x=1
0,0(0 оценок)
Ответ:
цафвіаі
цафвіаі
11.11.2022 20:36
\frac{11- 5^{x+1} }{25^{x}-5(35*5^{x-2}-2)} \geq 1,5 \\ 
 \frac{11- 5^{x+1} }{5^{2x}-7*5*5^{x-1}+10} \geq 1,5 \\ 
 \frac{11- 5*5^{x} }{(5^{x})^{2}-7*5^{x}+10} \geq 1,5 \\ 


Разложим на множители знаменатель:
(5^{x})^{2}-7*5^{x}+10=0 \\ 
5^{x} = t \\ 
t^{2}-7t+10=0 \\ 
 t_{1} = 2, t_{2} = 5 \\ 
5^{x} =2, 5^{x} = 5 \\ 

Тогда знаменатель раскладывается на множители:
\frac{11- 5*5^{x} }{(5^{x}-2)(5^{x}-5)} \geq 1,5 \\
ОДЗ:  5^{x} \neq 2. 5^{x} \neq 5 = x \neq 1, x \neq log_{5}2 \\
\frac{11- 5*5^{x} }{(5^{x}-2)(5^{x}-5)} - 1,5 \geq 0 \\
\frac{11- 5*5^{x} }{(5^{x}-2)(5^{x}-5)} - \frac{3}{2} \geq 0 \\
\frac{22- 10*5^{x} - 3(5^{x}-2)(5^{x}-5) }{2(5^{x}-2)(5^{x}-5)} \geq 0 \\
\frac{22- 10*5^{x} - 3((5^{x})^{2}-7*5^{x}+10) }{2(5^{x}-2)(5^{x}-5)} \geq 0 \\
\frac{22- 10*5^{x} - 3(5^{x})^{2}+21*5^{x}-30 }{2(5^{x}-2)(5^{x}-5)} \geq 0 \\
\frac{- 3(5^{x})^{2}+11*5^{x}-8 }{2(5^{x}-2)(5^{x}-5)} \geq 0 \\
\frac{3(5^{x})^{2}-11*5^{x}+8 }{2(5^{x}-2)(5^{x}-5)} \leq 0 \\
Разложим числитель на множители:
3(5^{x})^{2}-11*5^{x}+8=0 \\ 
5^{x}=t \\ 
3t^{2}-11t+8=0 \\ 
D= 121 - 4*3*8 = 121-96=25 \\ 
 \sqrt{D} = \sqrt{25}=5 \\ 
 t_{1}= \frac{11+5}{6} = \frac{16}{6} = \frac{8}{3} \\ 
 t_{2}= \frac{11-5}{6} = 1 \\ 
5^{x}=\frac{8}{3}, 5^{x}=1 \\

\frac{3(5^{x}-1) (5^{x}-\frac{8}{3})}{2(5^{x}-2)(5^{x}-5)} \leq 0 \\

Представив выражение слева в виде функции, видим она меняет знак в точках,  в которых каждая скобка обращается в ноль,  найдем эти точки:

5^{x}=1 = x=0 \\ \\ 

5^{x}=\frac{8}{3}= x= log_{5}\frac{8}{3} \\ \\ 
 5^{x} =2 = x= log_{5}2 \\ \\ 5^{x}=5 = x=1 \\
Решаем методом интервалов:  на числовом луче рисуем последовательно четыре точки:   0, log_{5}2, log_{5}\frac{8}{3} , 1 \\

    +              0                  log2          +         log8/3           1              +
[email protected]О[email protected]О-------------
                                -                                          -

ответ:  [ 0; log_{5}2)U[log_{5}\frac{8}{3}; 1) \\
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота