Постройте график функции, заданной формулой у = -1 – 3х. найдите по графику: 1) значение у, соответствующее значению х, равному –3; -1; 0; 1,5; 2; 2) значение х ,при котором значение у равно: -4; -2,5; -1; 3, 5; 5.
Натуральные числа разбиваются на два непересекающихся множества вида 2m и 2m+1, где m - натуральное. а) (2m)^2 + 2m + 1 = 4m^2 + 2m + 1 = 2(2m^2+m) + 1, где 2m^2+m натуральное (в силу того, что произведение и сумма натуральных числе всегда натуральна), будет нечётным. (2m+1)^2 + (2m+1) + 1 = 4m^2 + 4m + 1 + 2m + 1 + 1 = 4m^2 + 6m + 2 + 1 = 2(2m^2 + 3m + 1) + 1, где 2m^2 + 3m + 1 натуральное, будет нечётным.
b) Квадрат чётного числа - чётный. Потому число n^2 + n + 1 не может быть квадратом чётного числа. Покажем, что число не может быть и квадратом нечётного числа: n^2 + n + 1 = n^2 + 2n + 1 - n = (n+1)^2 - n Т.е. число n^2 + n + 1 отличается от квадрата (n + 1)^2 на n единиц. Может ли такое число быть квадратом? (n + 1)^2 - n^2 = n^2 + 2n + 1 - n^2 = 2n + 1 > n Не может.
Цельная и стройная запись решения: n^2 < n^2 + n + 1 = (n + 1)^2 - n < (n + 1)^2 Т.к. число n^2 + n + 1 лежит между двумя квадратами последовательных натуральных чисел, само оно не может быть квадратом натурального числа.
а) (2m)^2 + 2m + 1 = 4m^2 + 2m + 1 = 2(2m^2+m) + 1, где 2m^2+m натуральное (в силу того, что произведение и сумма натуральных числе всегда натуральна), будет нечётным.
(2m+1)^2 + (2m+1) + 1 = 4m^2 + 4m + 1 + 2m + 1 + 1 = 4m^2 + 6m + 2 + 1 =
2(2m^2 + 3m + 1) + 1, где 2m^2 + 3m + 1 натуральное, будет нечётным.
b) Квадрат чётного числа - чётный. Потому число n^2 + n + 1 не может быть квадратом чётного числа.
Покажем, что число не может быть и квадратом нечётного числа:
n^2 + n + 1 = n^2 + 2n + 1 - n = (n+1)^2 - n
Т.е. число n^2 + n + 1 отличается от квадрата (n + 1)^2 на n единиц. Может ли такое число быть квадратом?
(n + 1)^2 - n^2 = n^2 + 2n + 1 - n^2 = 2n + 1 > n
Не может.
Цельная и стройная запись решения:
n^2 < n^2 + n + 1 = (n + 1)^2 - n < (n + 1)^2
Т.к. число n^2 + n + 1 лежит между двумя квадратами последовательных натуральных чисел, само оно не может быть квадратом натурального числа.
Объяснение:
1) В коробке 2 красных шарика и 3 белых.
Если вынуть 1 красный, то останется 1 красный и 3 белых.
Красных 1/4.
Если вынуть 2 белых, то останется 2 красных и 1 белый.
Белых 1/3.
Всего 2 + 3 = 5 шариков.
ответ Б. 5.
2) У любого куба 8 угловых кубиков с 3 покрашенными гранями,
12*(p-2) кубиков на ребрах с 2 покрашенными гранями,
6(p-2)^2 кубиков на гранях с 1 покрашенной гранью и
(p-2)^3 внутренних граней, которые вообще не покрашены.
Например, у куба 3*3*3 будет 8 кубиков с 3 гранями,
12*1=12 кубиков с 2 гранями, 6*1^2 = 6 кубиков с 1 гранью и 1^3 = 1 кубик внутри.
Всего 8 + 6 = 14 нечетных кубиков и 12 + 1 = 13 четных кубиков.
А должно быть количество четных и нечетных кубиков одинаково.
8 + 6(p-2)^2 = 12(p-2) + (p-2)^3
Делаем замену p-2 = t и получаем кубическое уравнение:
t^3 - 6t^2 + 12t - 8 = 0
Так как t - число натуральное, то оно должно быть делителем 8.
t = 1 не подходит. Попробуем t = 2.
t^3 - 2t^2 - 4t^2 + 8t + 4t - 8 = 0
t^2*(t - 2) - 4t*(t - 2) + 4(t - 2) = 0
(t - 2)(t^2 - 4t + 4) = 0
(t - 2)^3 = 0
t = p - 2 = 2 - подошло.
p = 4
Только у куба 4*4*4 количество кубиков с нечетным числом окрашенных граней равно количеству кубиков с четным числом.
ответ: А. 4.
3. Периметр клумбы P1 = 2(a + b) = 14 м, значит, a + b = 7, b = 7 - a.
Площадь клумбы S1 = ab = a(7 - a) = 7a - a^2 кв.м.
Если длину каждой стороны увеличить на 1 м, то получится:
S2 = (a+1)(8-a) = 8a + 8 - a^2 - a = 7a - a^2 + 8 = S1 + 8 кв.м.
ответ: Площадь увеличится на 8 кв.м.