Вспомним предназначение и смысл формул сокращенного умножения. Ранее мы изучали и повторили достаточно трудоемкую операцию умножения многочленов, ее сложность заключается в том, что многочлен – это сумма одночленов, и для умножения нужно каждый член первого многочлена умножить на каждый член второго многочлена. В результате получаем достаточно большой многочлен, который нужно привести к стандартному виду. Формулы сокращенного умножения как раз упрощают операцию умножения многочленов.Приведем некоторые формулы: – квадрат суммы (разности); – разность квадратов; – разность кубов; – сумма кубов; называют неполным квадратом суммы; называют неполным квадратом разности;Отличие последних двух выражений от полного квадрата состоит в том, что в полном квадрате есть удвоенное произведение выражений, а в неполном – просто их произведение.
Найдем значение выражения (a ^ 2 - 1)/(5 * a ^ 2 + 5 * a) при а = - 2.
Для того, чтобы найти значение выражения (a ^ 2 - 1)/(5 * a ^ 2 + 5 * a), выражение сначала нужно упростить, а затем подставить известное значение в само выражение и вычислить его значение. То есть получаем:
(a ^ 2 - 1)/(5 * a ^ 2 + 5 * a) = (a - 1) * (a + 1)/(5 * a * (a + 1));
Числитель и знаменатель в дроби в правой части выражения сокращаем на (a + 1), тогда получим:
(a - 1) * (a + 1)/(5 * a * (a + 1)) = (a - 1) * 1/(5 * a * 1) = (a - 1)/(5 * a) = (- 2 - 1)/(5 * (- 2)) = (- 3)/(- 5 * 2) = - 3/(- 10) = 3/10.
Найдем значение выражения (a ^ 2 - 1)/(5 * a ^ 2 + 5 * a) при а = - 2.
Для того, чтобы найти значение выражения (a ^ 2 - 1)/(5 * a ^ 2 + 5 * a), выражение сначала нужно упростить, а затем подставить известное значение в само выражение и вычислить его значение. То есть получаем:
(a ^ 2 - 1)/(5 * a ^ 2 + 5 * a) = (a - 1) * (a + 1)/(5 * a * (a + 1));
Числитель и знаменатель в дроби в правой части выражения сокращаем на (a + 1), тогда получим:
(a - 1) * (a + 1)/(5 * a * (a + 1)) = (a - 1) * 1/(5 * a * 1) = (a - 1)/(5 * a) = (- 2 - 1)/(5 * (- 2)) = (- 3)/(- 5 * 2) = - 3/(- 10) = 3/10.
Объяснение: