Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе нужно первое уравнение умножить на -2:
Дано квадратное уравнение ax2 + bx + c = 0. Если a + b + c = 0 (сумма коэффициентов), то
x1 = 1, x2 = c/a
Свойство 2
Дано квадратное уравнение ax2 + bx + c = 0. Если a - b + c = 0 (сумма коэффициентов), когда b взято с противоположным знаком или a + c = b, то
x1 = -1, x2 = -c/aСвойство 3
Если в квадратном уравнении ax2 + bx + c = 0. Коэффициент b представлен в виде 2k, т.е. является четным числом, то формулу корней уравнения можно переписать в более простом виде
D = (b/2)2 + a*c
Свойство 3
Если в квадратном уравнении ax2 + bx + c = 0. Коэффициент b представлен в виде 2k, т.е. является четным числом, то формулу корней уравнения можно переписать в более простом виде
Данная система уравнений не имеет решений.
Объяснение:
Имеет ли решение система уравнений и сколько?
4х+3у=4
6у+8х=1 методом сложения
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе нужно первое уравнение умножить на -2:
-8х-6у= -8
6у+8х=1
Складываем уравнения:
-8х+8х-6у+6у= -8+1
0= -7
Данная система уравнений не имеет решений.
Свойство 1
Дано квадратное уравнение ax2 + bx + c = 0. Если a + b + c = 0 (сумма коэффициентов), то
x1 = 1, x2 = c/a
Свойство 2
Дано квадратное уравнение ax2 + bx + c = 0. Если a - b + c = 0 (сумма коэффициентов), когда b взято с противоположным знаком или a + c = b, то
x1 = -1, x2 = -c/aСвойство 3
Если в квадратном уравнении ax2 + bx + c = 0. Коэффициент b представлен в виде 2k, т.е. является четным числом, то формулу корней уравнения можно переписать в более простом виде
D = (b/2)2 + a*c
Свойство 3
Если в квадратном уравнении ax2 + bx + c = 0. Коэффициент b представлен в виде 2k, т.е. является четным числом, то формулу корней уравнения можно переписать в более простом виде
D = (b/2)2 + a*c