1. Распеши косинус двойного угла (косинус в квадрате х минус синус в квадрате х). 2. Через основное тригонометрическое тождество вырази синус через косинус. 3. Упрости вырожение, приведи подобные, заменив косинус х на а, должно плучиться квадратное уравнение (6а(в квадрате)-5а-4=0). 4. Решаем уравнение, получаем два корня один из которых не удовлетворяет условие косинус может быть только от -1 до 1. 5. Подставляешь полученный корень. Получаеться косинус х равно и корень. 6. Дальше решаешь через аркосинус и все решение.
к сожалению, не существует общего единого метода, следуя которому можно было бы решить любое уравнение, в котором участвуют тригонометрические функции. успех здесь могут обеспечить лишь хорошие знания формул и умение видеть те или иные полезные комбинации, что вырабатывается лишь практикой.
общая цель обычно состоит в преобразовании входящего в уравнение тригонометрического выражения к такому виду, чтобы корни находились из так называемых простейших уравнений:
1. Распеши косинус двойного угла (косинус в квадрате х минус синус в квадрате х).
2. Через основное тригонометрическое тождество вырази синус через косинус.
3. Упрости вырожение, приведи подобные, заменив косинус х на а, должно плучиться квадратное уравнение (6а(в квадрате)-5а-4=0).
4. Решаем уравнение, получаем два корня один из которых не удовлетворяет условие косинус может быть только от -1 до 1.
5. Подставляешь полученный корень. Получаеться косинус х равно и корень.
6. Дальше решаешь через аркосинус и все решение.
ответ: ниа.
объяснение:
к сожалению, не существует общего единого метода, следуя которому можно было бы решить любое уравнение, в котором участвуют тригонометрические функции. успех здесь могут обеспечить лишь хорошие знания формул и умение видеть те или иные полезные комбинации, что вырабатывается лишь практикой.
общая цель обычно состоит в преобразовании входящего в уравнение тригонометрического выражения к такому виду, чтобы корни находились из так называемых простейших уравнений:
сos px = a; sin gx = b; tg kx = c; ctg tx = d.