В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Karina1155
Karina1155
08.03.2022 18:10 •  Алгебра

Постройте график линейной функции: 2)у=2х+6; 3)у=-1,5х-3​

Показать ответ
Ответ:
superman48
superman48
30.06.2022 07:07

(4; \frac{79}{3})

Объяснение:

Дотична може бути паралельна заданій прямій, якщо їх кутові коефіцієнти рівні між собою. Кажучи простими словами, спочатку нам потрібно знайти точку в якій похідна рівна 3 (y = 5 +3х ).

Знайдемо похідну від f(x) = x^3/3−4x^2+19x−7:

f'(х) = x^2 - 8x + 19

Прирівнюємо дане квадратне рівняння до похідної прямої ( y = 5 +3х; у' = 3):

x^2 -8x + 19 = 3

x^2-8x + 16 = 0

Згідно т.Вієта:

x1+x2 = 8

x1*x2 = 16

x1 = 4; х2 = 4

Але це тільки абсциса, щоб знайти ординати потрібно підставити знайдені точки в рівняння функції:

f(4) = \frac{4^{3} }{3} -4*4^{2} + 19*4 - 7 = \frac{64}{3} -64+69 = \frac{64}{3} +5 = \frac{79}{3}

По суті, у нас два кореня рівняння x1 = 4 і x2 = 4 і ми повинні були записати дві точки, однак оскільки у нас відбулося співпадіння точок, то у відповідь можна записати одну, тобто (4; \frac{79}{3})

0,0(0 оценок)
Ответ:
aidosashimbek200
aidosashimbek200
30.06.2022 07:07

(4; \frac{79}{3})

Объяснение:

Дотична може бути паралельна заданій прямій, якщо їх кутові коефіцієнти рівні між собою. Кажучи простими словами, спочатку нам потрібно знайти точку в якій похідна рівна 3 (y = 5 +3х ).

Знайдемо похідну від f(x) = x^3/3−4x^2+19x−7:

f'(х) = x^2 - 8x + 19

Прирівнюємо дане квадратне рівняння до похідної прямої ( y = 5 +3х; у' = 3):

x^2 -8x + 19 = 3

x^2-8x + 16 = 0

Згідно т.Вієта:

x1+x2 = 8

x1*x2 = 16

x1 = 4; х2 = 4

Але це тільки абсциса, щоб знайти ординати потрібно підставити знайдені точки в рівняння функції:

f(4) = \frac{4^{3} }{3} -4*4^{2} + 19*4 - 7 = \frac{64}{3} -64+69 = \frac{64}{3} +5 = \frac{79}{3}

По суті, у нас два кореня рівняння x1 = 4 і x2 = 4 і ми повинні були записати дві точки, однак оскільки у нас відбулося співпадіння точок, то у відповідь можна записати одну, тобто (4; \frac{79}{3})

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота