Как перевести периодическую дробь в обыкновенную: 1) Считаем количество цифр в периоде десятичной дроби. Обозначаем количество цифр за букву k. У нас k=1. 2) Считаем количество цифр, стоящих после запятой, но до периода десятичной дроби. Обозначаем количество цифр за букву m. У нас m=1. 3) Записываем все цифры после запятой (включая цифры из периода) в виде натурального числа. Обозначаем полученное число буквой a. У нас а=23. 4) Теперь записываем все цифры, стоящие после запятой, но до периода, в виде натурального числа. Обозначаем полученное число буквой b. У нас b=2. 5) Подставляем найденные значения в формулу , где Y — целая часть бесконечной периодической дроби (у нас Y=0), количество девяток равно k, количество нулей равно m.
Как перевести периодическую дробь в обыкновенную:
1) Считаем количество цифр в периоде десятичной дроби. Обозначаем количество цифр за букву k. У нас k=1.
2) Считаем количество цифр, стоящих после запятой, но до периода десятичной дроби. Обозначаем количество цифр за букву m. У нас m=1.
3) Записываем все цифры после запятой (включая цифры из периода) в виде натурального числа. Обозначаем полученное число буквой a. У нас а=23.
4) Теперь записываем все цифры, стоящие после запятой, но до периода, в виде натурального числа. Обозначаем полученное число буквой b. У нас b=2.
5) Подставляем найденные значения в формулу , где Y — целая часть бесконечной периодической дроби (у нас Y=0), количество девяток равно k, количество нулей равно m.
Вычислим примеры:
1)
2)
Есть свойства пропорции
- В верной пропорции произведение крайних членов равно
произведению средних.
Верно и обратное утверждение:
-если произведение крайних членов равно произведению средних членов пропорции, то пропорция верна.
- Если в верной пропорции поменять местами средние члены или
крайние члены, то получившиеся новые пропорции тоже верны.
Запишем теперь Это на математическом языке
Есть 4 числа A.B.C.D
и есть верная пропорция
Где A и D крайние члены пропорции, B и C средние члены пропорции
тогда
- В верной пропорции произведение крайних членов равно
произведению средних.
теперь поменяем местами крайние и средние члены пропорции
проверим равенство
ДА, оно не поменялось
Значит действительно
- Если в верной пропорции поменять местами средние или крайние члены,то полученные пропорции также верны.