умножим уравнение на выражение: и получим уравнение:
данное уравнение является эквивалентным исходному, т.е. множество корней исходного уравнения совпадает с множеством коней полученного, так как исходное уравнение было умножено на всегда положительное выражение, т.е. на (подмодульные выражения и принимают значение при различных значениях , по этому сумма указанных выше двух модулей всегда строго положительна)
итак наше новое уравнение упрощается за формулой сокращенного умножения :
-------------------------- разложим на множители выражение
нули этого многочлена:
имеем:
точки разбивают множество действительных чисел на три интервала:
1) если , то имеем уравнение (оба модуля раскрываются с минусом):
оба корня не попали в интервал , значит из этой ветки корней для исходного уравнения не оказалось
2) если (один модуль раскрывается с минусом, а второй с плюсом), то:
в промежуток попадает лишь корень - первое найденное решение исходного уравнения
3) если то оба модуля раскрываются с плюсом, и мы получаем точно такое же уравнение, как и в случае 1) т.е. . В указанный интервал попадает лишь корень - второе и последнее решение исходного уравнения.
Числовые, буквенные выражения и выражения с переменными бывают составлены с использованием скобок, которые могут указывать порядок выполнения действий, содержать отрицательное число и т.п. Бывает удобно перейти от этого выражения со скобками к тождественно равному выражению, которое уже не содержит этих скобок. К примеру, от выражения 2·(3+4) можно перейти к выражению без скобок вида2·3+2·4. Этот переход от выражения со скобками к тождественно равному выражению без скобок дает представление о раскрытии скобок.
В школьном курсе математики к раскрытию скобок подходят в 6 классе. На этом этапе под раскрытием скобок понимают избавление от скобок, указывающих порядок выполнения действий. А изучают раскрытие скобок при рассмотрении выражений, которые содержат:
знаки плюс или минус перед скобками, заключающими суммы и/или разности, например, (a+7) и −(−3+2·a−12−b);произведение числа, одной или нескольких букв и суммы и/или разности в скобках, например, 3·(2−7), (3−a+8·c)·(−b) или −2·a·(b+2·c−3·m).
Однако ничто не мешает раскрытие скобок рассматривать немного шире. Почему бы не назвать раскрытием скобок переход от выражения, содержащего отрицательные числа в скобках, к выражению без скобок, например, переход от 5+(−3)−(−7) к5−3+7? Или замена произведения выражений в скобках вида (a+b)·(c+d) на суммуa·c+a·d+b·c+b·d противоречит смыслу раскрытия скобок?
Можно пойти еще дальше. Допустим, что в описанных выше выражениях вместо чисел и переменных могут быть любые выражения. В полученных таким выражениях тоже можно проводить раскрытие скобок. Для иллюстрации возьмем выражение , ему соответствует выражение без скобок вида .
Итак, мы под раскрытием скобок будем понимать избавление от скобок, указывающих порядок выполнения действий, а также избавление от скобок, в которые заключены отдельные числа и выражения.
И обратим внимание еще на один момент, касающийся особенностей записи решения при раскрытии скобок. Начальное выражение со скобками и результат, полученный после раскрытия скобок, удобно записывать в виде равенства. Например, выражение3−(5−7) после раскрытия скобок принимает вид 3−5+7, это наглядно отражает равенство 3−(5−7)=3−5+7. При раскрытии скобок в громоздких выражениях возникает необходимость в записи промежуточных результатов, в этом случае решение удобно оформлять в виде цепочки равенств, к примеру,5−(3−(2−1))=5−(3−2+1)=5−3+2−1 или 5−(3−(2−1))=5−3+(2−1)=5−3+2−1.
-----------------------------------
умножим уравнение на выражение:
и получим уравнение:
данное уравнение является эквивалентным исходному, т.е. множество корней исходного уравнения совпадает с множеством коней полученного, так как исходное уравнение было умножено на всегда положительное выражение, т.е. на
(подмодульные выражения и принимают значение при различных значениях , по этому сумма указанных выше двух модулей всегда строго положительна)
итак наше новое уравнение упрощается за формулой сокращенного умножения :
ответ:
----------------------------------------
-----------------------------------
ответ:
-------------------------------------------
--------------------------
разложим на множители выражение
нули этого многочлена:
имеем:
точки разбивают множество действительных чисел на три интервала:
1) если , то имеем уравнение (оба модуля раскрываются с минусом):
оба корня не попали в интервал , значит из этой ветки корней для исходного уравнения не оказалось
2) если (один модуль раскрывается с минусом, а второй с плюсом), то:
в промежуток попадает лишь корень - первое найденное решение исходного уравнения
3) если то оба модуля раскрываются с плюсом, и мы получаем точно такое же уравнение, как и в случае 1)
т.е. . В указанный интервал попадает лишь корень - второе и последнее решение исходного уравнения.
ответ:
Числовые, буквенные выражения и выражения с переменными бывают составлены с использованием скобок, которые могут указывать порядок выполнения действий, содержать отрицательное число и т.п. Бывает удобно перейти от этого выражения со скобками к тождественно равному выражению, которое уже не содержит этих скобок. К примеру, от выражения 2·(3+4) можно перейти к выражению без скобок вида2·3+2·4. Этот переход от выражения со скобками к тождественно равному выражению без скобок дает представление о раскрытии скобок.
В школьном курсе математики к раскрытию скобок подходят в 6 классе. На этом этапе под раскрытием скобок понимают избавление от скобок, указывающих порядок выполнения действий. А изучают раскрытие скобок при рассмотрении выражений, которые содержат:
знаки плюс или минус перед скобками, заключающими суммы и/или разности, например, (a+7) и −(−3+2·a−12−b);произведение числа, одной или нескольких букв и суммы и/или разности в скобках, например, 3·(2−7), (3−a+8·c)·(−b) или −2·a·(b+2·c−3·m).Однако ничто не мешает раскрытие скобок рассматривать немного шире. Почему бы не назвать раскрытием скобок переход от выражения, содержащего отрицательные числа в скобках, к выражению без скобок, например, переход от 5+(−3)−(−7) к5−3+7? Или замена произведения выражений в скобках вида (a+b)·(c+d) на суммуa·c+a·d+b·c+b·d противоречит смыслу раскрытия скобок?
Можно пойти еще дальше. Допустим, что в описанных выше выражениях вместо чисел и переменных могут быть любые выражения. В полученных таким выражениях тоже можно проводить раскрытие скобок. Для иллюстрации возьмем выражение , ему соответствует выражение без скобок вида .
Итак, мы под раскрытием скобок будем понимать избавление от скобок, указывающих порядок выполнения действий, а также избавление от скобок, в которые заключены отдельные числа и выражения.
И обратим внимание еще на один момент, касающийся особенностей записи решения при раскрытии скобок. Начальное выражение со скобками и результат, полученный после раскрытия скобок, удобно записывать в виде равенства. Например, выражение3−(5−7) после раскрытия скобок принимает вид 3−5+7, это наглядно отражает равенство 3−(5−7)=3−5+7. При раскрытии скобок в громоздких выражениях возникает необходимость в записи промежуточных результатов, в этом случае решение удобно оформлять в виде цепочки равенств, к примеру,5−(3−(2−1))=5−(3−2+1)=5−3+2−1 или 5−(3−(2−1))=5−3+(2−1)=5−3+2−1.