Чертим отрезок равный длине одной из сторон. в начало или конец отрезка устанавливаем циркуль и чертим окружность радиусом равным второй стороне. берём транспортир и устанавливаем его в центр окружности и отмеряем угол между исходным отрезком и второй стороной, ставим точку на окружности. соединяем отрезком центр окружности и точку на окружности. далее соединяем второй конец отрезка и точку на окружности. чертим отрезок равный одной из сторон, лучше выбрать большую сторону. в начало отрезка устанавливаем циркуль и радиусом, равным длине второй стороны, чертим окружность. на другом конце отрезка также устанавливаем циркуль и чертим окружность, но радиусом равным длине третьей стороны. получим точку пересечения окружностей. соединяем её с вершинами исходного отрезка и получаем заданный треугольник.
1) График линейной функции y = kx + b может располагаться в III и IV координатных четвертях в случае, если k = 0, а b˂0, тогда функция имеет вид y = b и проходит параллельно оси ОХ через точку (0; b).
2) При условии b = 0, а k ˃ 0, тогда функция имеет вид y = kx (прямая пропорциональность), проходит через точку (0;0) и наклонена под острым углом к положительной части оси абсцисс.
3)Не может.
4) Уравнение вида х=а - не является функцией, не может.
1) График линейной функции y = kx + b может располагаться в III и IV координатных четвертях в случае, если k = 0, а b˂0, тогда функция имеет вид y = b и проходит параллельно оси ОХ через точку (0; b).
2) При условии b = 0, а k ˃ 0, тогда функция имеет вид y = kx (прямая пропорциональность), проходит через точку (0;0) и наклонена под острым углом к положительной части оси абсцисс.
3)Не может.
4) Уравнение вида х=а - не является функцией, не может.
5)Аналогично 4) не может.
6)Как в 1), только b˃0.
1.да 2. ? 3.да 4. да 5.нет 6.нет
Объяснение:
Как то так