1) верно, так как у правильного треугольника радиус вписанной окружности в два раза меньше радиуса описанной окружности. 2) не верно, так как центр вписанной в треугольник окружности является точкой пересечения биссектрис этого треугольника. 3) не верно, так как центр описанной окружности равнобедренного треугольника лежит на высоте, проведённой к основанию треугольника 4) верно, так как окружность называется описанной около треугольника, если она проходит через все его вершины. Значит ОА = ОВ = ОС = R (R -радиус окружности)
2) не верно, так как центр вписанной в треугольник окружности является точкой пересечения биссектрис этого треугольника.
3) не верно, так как центр описанной окружности равнобедренного треугольника лежит на высоте, проведённой к основанию треугольника
4) верно, так как окружность называется описанной около треугольника, если она проходит через все его вершины. Значит ОА = ОВ = ОС = R (R -радиус окружности)
{ 1.5x + 4 > 3x + 7
{ 3x + 23 ≥ 8
{1.5x - 3x > 7 - 4
{ 3x ≥ 8 - 23
{ - 1.5x > 3 |×(-1)
{ 3x ≥ - 15
{ 1.5x < 3
{ x ≥ - 5
{ x < 2
{ x ≥ - 5
Точки на числовой оси в приложении .
ответ : - 5 ≤ x < 2
x∈ [ - 5 ; 2 )
2)
{ 0,6 - 3х > x - 11.4
{ 2x ≤ x +5
{ - 3x - x > - 11.4 - 0.6
{ 2x - x ≤ 5
{ - 4x > - 12 |× (-1)
{ x≤ 5
{ 4x < 12
{ x ≤ 5
{ x < 3
{ x ≤ 5
Точки на числовой оси в приложении.
ответ : -∞ < х < 3
х ∈ ( - ∞ ; 3 )