Если периметр прямоугольника равен 56 см ,то полупериметр равен 28 см. Обозначим длину прямоугольника через х см ,тогда ширина равна
(28 - x) см . Стороны прямоугольника и диагональ образуют прямоугольный треугольник, в котором стороны прямоугольника - это катеты, а диагональ - это гипотенуза. Тогда по теореме Пифагора :
x² + (28 - x)² = 20²
x² + 784 - 56x + x² - 400 = 0
2x² - 56x + 384 = 0
x² - 28x + 192 = 0
D = (- 28)² - 4 * 192 = 784 - 768 = 16 = 4²
x₁ = (28- 4)/2 = 12
x₂ = (28 + 4)/2 = 16
28 - 12 = 16
28 - 16 = 12
ответ : стороны прямоугольника равны 12 см и 16 см
Находим производную: y'=4^x*ln(4)-2^x*ln(2)=2*(2^x)²*ln(2)-2^x*ln(2)=2^x*ln(2)*[2*2^x-1]. Приравнивая её к нулю и учитывая, что 2^x*ln(2)≠0, получаем уравнение 2*2^x-1=2^(x+1)-1=0, или 2^(x+1)=1. Отсюда x+1=log₂1=0 и x=-1 - единственная критическая точка. Если x<-1, то y'<0; если x>-1, то y'>0. Значит, точка x=-1 является точкой минимума. Подставляя x=-1 в выражение для функции, находим y(-1)=4^(-1)-2^(-1)+1=3/4. А так как касательная в точке минимума параллельна оси абсцисс, то её уравнением является y=3/4.
Если периметр прямоугольника равен 56 см ,то полупериметр равен 28 см. Обозначим длину прямоугольника через х см ,тогда ширина равна
(28 - x) см . Стороны прямоугольника и диагональ образуют прямоугольный треугольник, в котором стороны прямоугольника - это катеты, а диагональ - это гипотенуза. Тогда по теореме Пифагора :
x² + (28 - x)² = 20²
x² + 784 - 56x + x² - 400 = 0
2x² - 56x + 384 = 0
x² - 28x + 192 = 0
D = (- 28)² - 4 * 192 = 784 - 768 = 16 = 4²
x₁ = (28- 4)/2 = 12
x₂ = (28 + 4)/2 = 16
28 - 12 = 16
28 - 16 = 12
ответ : стороны прямоугольника равны 12 см и 16 см
ответ: y=3/4.
Объяснение:
Находим производную: y'=4^x*ln(4)-2^x*ln(2)=2*(2^x)²*ln(2)-2^x*ln(2)=2^x*ln(2)*[2*2^x-1]. Приравнивая её к нулю и учитывая, что 2^x*ln(2)≠0, получаем уравнение 2*2^x-1=2^(x+1)-1=0, или 2^(x+1)=1. Отсюда x+1=log₂1=0 и x=-1 - единственная критическая точка. Если x<-1, то y'<0; если x>-1, то y'>0. Значит, точка x=-1 является точкой минимума. Подставляя x=-1 в выражение для функции, находим y(-1)=4^(-1)-2^(-1)+1=3/4. А так как касательная в точке минимума параллельна оси абсцисс, то её уравнением является y=3/4.