Пусть на расстояни х км от пункта А состоялась встреча - єто так же расстояние которое проехал мотоциклист за 1 ч 20 мин=80 мин, поєтому его скорость равна х/80 км/мин, все расстояние АВ мотоциклист одолел за 80/(x/80)=80*80/x мин, а до встречи он ехал (до встречи ехал велосипедист)6400/x-80 мин, после встречи велосипедист проехал 80-х км, значит его скорость равна (80-х)/180 км/мин, все расстояние велосипедист проехал за 80/((80-х)/180)=80*180/(80-x) мин, а до встречи он ехал 80*180/(80-x)-180 мин.По условию задачи составляем уравнение
80*80/x-80=80*180/(80-x)-180 8*(80/x-1)=18*(80/(80-x)-1) 4*(80-x)/x=9*(80-80+x)/(80-x) 4*(80-x)/x=9x/(80-x) 4*(80-x)^2=9x^2 4*(6400-160x+x^2)=9x^2 25600-640x+4x^2=9x^2 5x^2+640x-25600=0 x^2+128x-5120=0 D=36864=192^2x х1=(-128-192)/2<0 - не подходит под условия задачи (расстояние не может быть отрицательным) x2=(-128+192)/2=32 х=32 ответ: 32 км
80*80/x-80=80*180/(80-x)-180
8*(80/x-1)=18*(80/(80-x)-1)
4*(80-x)/x=9*(80-80+x)/(80-x)
4*(80-x)/x=9x/(80-x)
4*(80-x)^2=9x^2
4*(6400-160x+x^2)=9x^2
25600-640x+4x^2=9x^2
5x^2+640x-25600=0
x^2+128x-5120=0
D=36864=192^2x
х1=(-128-192)/2<0 - не подходит под условия задачи (расстояние не может быть отрицательным)
x2=(-128+192)/2=32
х=32
ответ: 32 км
√(3x-2)^2=(5x-8)^2
(3х-2) = 25x^2-80x+64
25x^2-80x+64-3x+2=0
25x^2-83x+66=0
x1=2
x2=1.32
Проверка:
√(3*2-2)=5*2-8
√(6-2)=10-8
√4=2
2=2
Следовательно, х=2 - корень
Проверяем второй корень:
√(3*1,42-2)=5*1,42-8
√2,26=-0,9 - второй корень не подходит
ответ: х=2
2. √(2x^2-3x+2)=√16-8x+x^2
2x^2-3x+2=16-8x+x^2
2x^2-3x+2-16+8x-x^2=0
x^2+5x-14=0
х1=2
х2=-7
Проверка:
√(2*2^2-3*2+2)=√16-8*2+2^2
√4=√4
2=2
Следовательно, х=2 - корень
Проверяем второй корень:
√(2(-7)^2-3*(-7)+2)=√16-8*(-7)+(-7)^2
√121 = √121
11=11
Следовательно, х=-7 - корень
ответ: х1=2, х2=-7