При делении любого выражения на 0 получается неопределенное выражение
Объяснение:
Запишем деление единицы на ноль:
a = 1/0
Отсюда:
a • 0 = 1
Нужно найти такое a, которое при умножении на ноль дает единицу. Таких чисел просто нет. Так как произведение равно нулю, когда один из множителей равен нулю, получаем:
0 = 1
Но ноль не равен единице, поэтому запись 0 = 1 неверна, а запись a = 1/0 не имеет смысла (решений) при любом a. А если разделить ноль на ноль? Запишем:
a = 0/0
a • 0 = 0
Уравнение имеет смысл при любых значениях a, так как умножая 0 на a получаем:
Вроде так Неравенства решаются так же, как и уравнения. Только при делении или умножении членов неравенства на отрицательное число знак неравенства меняется на противоположный. 1-я система. 3х-2>2x-6+5x; 3x-7x>-6+2; -4x>-4; x<(-4)/(-4); x<1; 2x^2+(25+10x+x^2)>3(x^2-25); 2x^2+25+10x+x^2>3x^2-75; 10x>-75-25; 10x>-100; x>-10; общее решение: -10<x<1,>0; (x+3)(2x-1-2x)>0; -(x+3)>0; x+3<0; x<-3; x-1>3x+2; x-3x>2+1; -2x>3; x<3/(-2); x<-1.5; общее решение x<-3, т.е. значения х находятся в промежутке (-беск.;-3).
Любое выражение, умноженное на 0, равна 0.
При делении любого выражения на 0 получается неопределенное выражение
Объяснение:
Запишем деление единицы на ноль:
a = 1/0
Отсюда:
a • 0 = 1
Нужно найти такое a, которое при умножении на ноль дает единицу. Таких чисел просто нет. Так как произведение равно нулю, когда один из множителей равен нулю, получаем:
0 = 1
Но ноль не равен единице, поэтому запись 0 = 1 неверна, а запись a = 1/0 не имеет смысла (решений) при любом a. А если разделить ноль на ноль? Запишем:
a = 0/0
a • 0 = 0
Уравнение имеет смысл при любых значениях a, так как умножая 0 на a получаем:
0 = 0
1-я система. 3х-2>2x-6+5x; 3x-7x>-6+2; -4x>-4; x<(-4)/(-4); x<1;
2x^2+(25+10x+x^2)>3(x^2-25); 2x^2+25+10x+x^2>3x^2-75; 10x>-75-25; 10x>-100; x>-10; общее решение: -10<x<1,>0; (x+3)(2x-1-2x)>0; -(x+3)>0; x+3<0; x<-3;
x-1>3x+2; x-3x>2+1; -2x>3; x<3/(-2); x<-1.5; общее решение x<-3, т.е. значения х находятся в промежутке (-беск.;-3).