Постройте график y=(x² - 2x - 3) (x² - 3x + 2) / x²- 4x + 3 и определите, при каких значениях m прямая y=m не имеет с графиком одну общую точку.с рисунком,если
Объём работы положим равным единице, скорость (производительность) первого равна v1, второго v2. Условие про разницу в один день: (1/v1) + 1 = 1/v2. Условие про совместную работу: (v1+v2)*1=5/6. Решаем эту систему. Из второго уравнения выражаем v1=(5/6)-v2 и подставляем в первое уравнение. После упрощений получаем квадратное уравнение относительно v2: 6(v2)^2 -17v2+5=0, решаем его стандартно и получаем два корня: v2=2,5 или второй корень v2=1/3. Теперь для каждого из этих корней надо найти ему пару - то есть скорость первого трактора. Используем формулу (была написана выше) v1=(5/6)-v2 и получаем в первом случае v1=-5/3 - не подходит, так как отрицательное число (получается, что первый трактор не распахивает поле, а запахивает его обратно), а для второго корня (v2=1/3) получаем v1=1/2. Таким образом, время второго равно 1/v2=3 дня. Проверка: в исходное условие (v1+v2)*1=5/6 подставляем v1 и v2 и получаем верное равенство.
10/(x-a) - 1 <= 0 (10 - (x-a)) / (x-a) <= 0 дробь меньше нуля, когда числитель и знаменатель имеют разные знаки... x-a < 0 10 - (x-a) >= 0 или x-a > 0 10 - (x-a) <= 0
решение первой системы: x-a < 0 x-a <= 10 x-a < 0 решение второй системы: x-a > 0 x-a >= 10 x-a >= 10 решение первого неравенства: x < a или x >= a+10 (два луча))) второе неравенство равносильно двойному неравенству: -4 <= x-3a <= 4 3a-4 <= x <= 4+3a (один отрезок))) если отметить все значения на числовой прямой, то станет очевидно, что расстояние между концами первых двух лучей 10 единиц, длина отрезка-решения второго неравенства = (4+3a)-(3a-4) = 8 единиц система будет иметь единственное решение, когда эти лучи и отрезок имеют только одну общую точку... это условие: 3a+4 = 10+a (правый край отрезка = левому краю луча (правого))) 2a = 6 a = 3
(1/v1) + 1 = 1/v2. Условие про совместную работу: (v1+v2)*1=5/6. Решаем эту систему. Из второго уравнения выражаем v1=(5/6)-v2 и подставляем в первое уравнение. После упрощений получаем квадратное уравнение относительно v2:
6(v2)^2 -17v2+5=0, решаем его стандартно и получаем два корня: v2=2,5 или второй корень v2=1/3. Теперь для каждого из этих корней надо найти ему пару - то есть скорость первого трактора. Используем формулу (была написана выше) v1=(5/6)-v2 и получаем в первом случае v1=-5/3 - не подходит, так как отрицательное число (получается, что первый трактор не распахивает поле, а запахивает его обратно), а для второго корня (v2=1/3) получаем v1=1/2. Таким образом, время второго равно 1/v2=3 дня. Проверка: в исходное условие (v1+v2)*1=5/6 подставляем v1 и v2 и получаем верное равенство.
(10 - (x-a)) / (x-a) <= 0
дробь меньше нуля, когда числитель и знаменатель имеют разные знаки...
x-a < 0
10 - (x-a) >= 0
или
x-a > 0
10 - (x-a) <= 0
решение первой системы:
x-a < 0
x-a <= 10
x-a < 0
решение второй системы:
x-a > 0
x-a >= 10
x-a >= 10
решение первого неравенства: x < a или x >= a+10 (два луча)))
второе неравенство равносильно двойному неравенству:
-4 <= x-3a <= 4
3a-4 <= x <= 4+3a (один отрезок)))
если отметить все значения на числовой прямой, то станет очевидно, что
расстояние между концами первых двух лучей 10 единиц,
длина отрезка-решения второго неравенства = (4+3a)-(3a-4) = 8 единиц
система будет иметь единственное решение, когда эти лучи и отрезок имеют только одну общую точку...
это условие: 3a+4 = 10+a (правый край отрезка = левому краю луча (правого)))
2a = 6
a = 3