Будем искать уравнение касательной в виде y-y0=k*(x-x0), где x0 и y0 - неизвестные пока координаты точки касания, k - угловой коэффициент касательной. Но так как k=tg(α), а по условию α=135°, то k=tg(135°)=-1. Теперь уравнение касательной можно записать в виде y-y0=-1*(x-x0). А так как точка касания принадлежит графику функции, то справедливо уравнение y0=5*x0²-2*x0. С другой стороны, k=y'(x0). Производная y'(x)=10*x-2, отсюда k=10*x0-2=-1, или 10*x0=1. Получена система из двух уравнений:
y0=5*x0²-2*x0
10*x0=1
Решая её, находим x0=0,1 и y0=-0,15. Тогда уравнение касательной таково: x-0,1=-1*(y+0,15), или 20*x-2=-20*y-3, или 20*x+20*y+1=0.
если x1 больший корень а x2 меньший то x1=5x2
по теореме Виета
x1x2=c/a
x1+x2=-b/a
тогда решаем системой
5x2*x2=(49a^2-7a)/1
5x2+x2=(-(-(14a-1))/1 ⇒
5x2^2=49a^2-7a
6x2=14a-1 ⇒ x2=(14a-1)/6
5((14a-1)/6)^2=49a^2-7a
5((196a^2-28a+1)/36)=49a^2-7a
5(196a^2-28a+1)=36(49a^2-7a)
980a^2-140a+5=1764a^2-252a
784a^2-112a-5=0
D=(-112)^2-4*784*(-5)=12544+15680=28224=168^2
a1=(-(-112)-168)/(2*784)=(112-168)/1568=-56/1568=-1/28
a2=(-(-112)+168)/(2*784)=(112+168)/1568=280/1568=5/28
Будем искать уравнение касательной в виде y-y0=k*(x-x0), где x0 и y0 - неизвестные пока координаты точки касания, k - угловой коэффициент касательной. Но так как k=tg(α), а по условию α=135°, то k=tg(135°)=-1. Теперь уравнение касательной можно записать в виде y-y0=-1*(x-x0). А так как точка касания принадлежит графику функции, то справедливо уравнение y0=5*x0²-2*x0. С другой стороны, k=y'(x0). Производная y'(x)=10*x-2, отсюда k=10*x0-2=-1, или 10*x0=1. Получена система из двух уравнений:
y0=5*x0²-2*x0
10*x0=1
Решая её, находим x0=0,1 и y0=-0,15. Тогда уравнение касательной таково: x-0,1=-1*(y+0,15), или 20*x-2=-20*y-3, или 20*x+20*y+1=0.
ответ: x0=0,1.