Чтобы умножить дробь на дробь, нужно числитель первой дроби умножить на числитель второй дроби, а знаменатель первой дроби умножить на знаменатель второй дроби:
=[a(x+y)*х³у] / [ху³ *8(x+y)]=
сокращение (x+y) и (x+y) на (x+y), х и х³ на х, у и у³ на у:
=(ах²)/(8у²).
3. Найти значение выражения:
(у²-4у+4)/(у²-4) : (10у-20)/(у²+2у)= при у=80
В числителе первой дроби развёрнут квадрат разности, свернуть, в знаменателе разность квадратов, развернуть.
В числителе второй дроби вынести 10 за скобки, в знаменателе вынести у за скобки:
=(у-2)²/(у-2)(у+2) : [10(y-2)]/[y(y+2)]=
Чтобы разделить дробь на дробь, нужно числитель первой дроби умножить на знаменатель второй, а знаменатель первой умножить на числитель второй.
=[(у-2)(у-2)*y(y+2)] : [(у-2)(у+2)*10(y-2)]=
сокращение (у-2) и (у-2) на (у-2) 2 раза, (у+2) и (у+2) на (у+2)
Просто решить? Так это ж изи) Вычисляешь дискриминант и все дела... а) a^2-5a+4=0 D=25-4*4=25-16=9 a1=(5+3)/2=4 a2=(5-3)/2=1 ответ: корни 1 и 4 б) (x-2)^2=(2-x)(x-3) x^2-6x+9=2x-6-x^2+3x x^2+x^2-6x-2x-3x+9+6=0 2x^2-11x+15=0 D=121-15*2*4=121-120=1 x1=(11+1)/4=3 x2=(11-1)/4=2,5 ответ: корни 3 и 2,5 в) (y+2)(y-2)= -6(y+2) y^2-4= -6y-12 y^2+6y-4+12=0 y^2+6y+8=0 D=36-8*4=36-32=4 y1=(-6+2)/2=-2 y2=(-6-2)/2=-4 ответ: корни -2 и -4 г) q(q-1)=q+15/3 (довольно странно, что 15/3 дробью записано, ибо 15:3=5, без остатка же делится... Ну ладно...) q^2-q=q+5 q^2 -2q-5=0 D=4+5*4=4+20=24 q1=(2+)/2 q2=(2-)/2 ответ: корни (2+)/2 и (2-)/2 Хотя с последним может напортачила из-за неправильной записи уравнения. Перепроверь написание ;) УДАЧИ))
1.
а)2х/3у;
б)(х+1)/х.
2.
а)(х-2)/х;
б)(ах²)/(8у²).
3. 8.
Объяснение:
1. Сократить дроби:
а)[16x(x-y)]/[24y(x-y)]=
сокращение (x-y) и (x-y) на (x-y), 16 и 24 на 8:
=2х/3у;
б)(х²+х)/х²=[x(x+1)]/x²=
сокращение х и x² на х:
=(х+1)/х.
2. Выполнить действия:
а)(14х-9)/17х+(3х-25)/17х=
=(14х-9+3х-25)/17х=
=(17х-34)/17х=
=[17(x-2)]/17x=
сокращение 17 и 17 на 17:
=(х-2)/х;
б)(ах+ау)/ху³ * х³у/(8х+8у)=
=[a(x+y)]/ху³ * х³у/[8(x+y)]=
Чтобы умножить дробь на дробь, нужно числитель первой дроби умножить на числитель второй дроби, а знаменатель первой дроби умножить на знаменатель второй дроби:
=[a(x+y)*х³у] / [ху³ *8(x+y)]=
сокращение (x+y) и (x+y) на (x+y), х и х³ на х, у и у³ на у:
=(ах²)/(8у²).
3. Найти значение выражения:
(у²-4у+4)/(у²-4) : (10у-20)/(у²+2у)= при у=80
В числителе первой дроби развёрнут квадрат разности, свернуть, в знаменателе разность квадратов, развернуть.
В числителе второй дроби вынести 10 за скобки, в знаменателе вынести у за скобки:
=(у-2)²/(у-2)(у+2) : [10(y-2)]/[y(y+2)]=
Чтобы разделить дробь на дробь, нужно числитель первой дроби умножить на знаменатель второй, а знаменатель первой умножить на числитель второй.
=[(у-2)(у-2)*y(y+2)] : [(у-2)(у+2)*10(y-2)]=
сокращение (у-2) и (у-2) на (у-2) 2 раза, (у+2) и (у+2) на (у+2)
=у/10=80/10=8.
Вычисляешь дискриминант и все дела...
а) a^2-5a+4=0
D=25-4*4=25-16=9
a1=(5+3)/2=4
a2=(5-3)/2=1
ответ: корни 1 и 4
б) (x-2)^2=(2-x)(x-3)
x^2-6x+9=2x-6-x^2+3x
x^2+x^2-6x-2x-3x+9+6=0
2x^2-11x+15=0
D=121-15*2*4=121-120=1
x1=(11+1)/4=3
x2=(11-1)/4=2,5
ответ: корни 3 и 2,5
в) (y+2)(y-2)= -6(y+2)
y^2-4= -6y-12
y^2+6y-4+12=0
y^2+6y+8=0
D=36-8*4=36-32=4
y1=(-6+2)/2=-2
y2=(-6-2)/2=-4
ответ: корни -2 и -4
г) q(q-1)=q+15/3 (довольно странно, что 15/3 дробью записано, ибо 15:3=5, без остатка же делится... Ну ладно...)
q^2-q=q+5
q^2 -2q-5=0
D=4+5*4=4+20=24
q1=(2+)/2
q2=(2-)/2
ответ: корни (2+)/2 и (2-)/2
Хотя с последним может напортачила из-за неправильной записи уравнения. Перепроверь написание ;)
УДАЧИ))