1 y=x² 1)x=2 y=4 2)x=-3/4 y=9/16 2 1)x²=9 x1=-3 U x2=3 (-3;9);(3;9) 2)x²=-x x²+x=0 x(x+1)=0 x1=0⇒y1=0 x2=-1⇒y2=1 (0;0);(-1;1) 3 y=x²,вершина в точке (0;0)-точка минимума у=0-наименьшее у(-4)=16 наибольшее (3)=9 х -4 -3 -2 -1 0 1 2 3 у 16 9 4 1 0 1 4 9 по этим точкам строишь график 4 1)х²=х Строишь параболу у=х² по таблице которая в №3 Строишь прямую у=х по точкам (0;0) и (1;1) ответ (0;0);(1;1) 2)Строишь параболу у=х² по таблице которая в №3 Строишь прямую у=2х-1 по точкам (0;-1) и (1;1) ответ (1;1) 5 y1=x² и у2=6х-5 Строишь параболу у=х² по таблице которая в №3 Строишь прямую у=6х-5 по точкам (0;-5) и (1;1) ответ (5;0)4(1;1)
3) Биссектриса угла делит противоположную сторону на отрезки пропорциональные прилегающим сторонам.
КС/ВК = АС/АВ
18/8=АС/12
АС=(18 х 12) : 8=27
4) BM : MC = 2 : 9, то есть BM = 2x и MC = 9x
Рассмотрим ΔABC и ΔKBM
По условию MK ║ AC ⇒ ∠BKM = ∠A - соответственные углы
∠B - общий ⇒ ΔABC ~ ΔKBM по двум равным углам. ⇒
ответ: AC = 99 см
5) Рассмотрим треугольники ВСО и АОД:
1) угол ВСО = углу АОД (вертикальные углы);
2) угол АДО = углу ОВС (накрест лежащие при параллельных ВС и АД и секущей АД)
Значит треугольник ВСО подобен треугольнику АОД по первому признаку.
Из подобнисти треугольников следует пропорциональность сторон:
ВС/AD = BO/OD
3/5 = х/х-24
72-3х = 5х
-8х = -72
х = 9
ВО = 9 см
ОД = 15 см
y=x²
1)x=2 y=4
2)x=-3/4 y=9/16
2
1)x²=9
x1=-3 U x2=3
(-3;9);(3;9)
2)x²=-x
x²+x=0
x(x+1)=0
x1=0⇒y1=0
x2=-1⇒y2=1
(0;0);(-1;1)
3
y=x²,вершина в точке (0;0)-точка минимума
у=0-наименьшее
у(-4)=16 наибольшее
(3)=9
х -4 -3 -2 -1 0 1 2 3
у 16 9 4 1 0 1 4 9
по этим точкам строишь график
4
1)х²=х
Строишь параболу у=х² по таблице которая в №3
Строишь прямую у=х по точкам (0;0) и (1;1)
ответ (0;0);(1;1)
2)Строишь параболу у=х² по таблице которая в №3
Строишь прямую у=2х-1 по точкам (0;-1) и (1;1)
ответ (1;1)
5
y1=x² и у2=6х-5
Строишь параболу у=х² по таблице которая в №3
Строишь прямую у=6х-5 по точкам (0;-5) и (1;1)
ответ (5;0)4(1;1)