Это линейная функция графиком которой является прямая ,чтобы построить прямую достаточно знать две точки х=0 тогда у =-3·0+4= 4 (0;4)-первая точка у=-2 -2=-3х+4 -3х=-2-4 -3х--6 х=-6÷(-3) х=2 (2;-2) вторая точка отмечаеш в декартовой системе координат эти точки и через них проводиш прямую это и будет график функции если координати точки удовлетворяют уравнению -значит точка пренадлежит графику а это значит что график проходит через точку А Подставим координаты точку и проверим -130=-3·42+4 -130=-132+4 -130 ≠-128 это значит что график не проходит через точку А(42;-130)
х=0 тогда у =-3·0+4= 4 (0;4)-первая точка
у=-2 -2=-3х+4
-3х=-2-4
-3х--6
х=-6÷(-3)
х=2
(2;-2) вторая точка
отмечаеш в декартовой системе координат эти точки и через них проводиш прямую это и будет график функции
если координати точки удовлетворяют уравнению -значит точка пренадлежит графику а это значит что график проходит через точку А
Подставим координаты точку и проверим
-130=-3·42+4
-130=-132+4
-130 ≠-128 это значит что график не проходит через точку А(42;-130)
7^2x-6*7^x-7=0
7^x=t>0
t²-6t-7=0
t1=7 t2=-1<0
7^x=7⇒x=1
2) cos2x+sinx=0
1-2sin²x+sinx=0
2sin²x-sinx-1=0 решаем как квадратное через дискриминант
D=1-4*2*(-1)=9
sinx=(1-3)/4=-1/2 x=(-1)^(n+1)*π/6+πn, n∈Z
sinx=(1+3)/4=1 x=π/2+2πk, k∈Z
3)5sin²x+3sinxcosx+4cos²x=3
5sin²x+3sinxcosx+4cos²x-3(sin²x+cos²x)=0
5sin²x+3sinxcosx+4cos²x-3sin²x-3cos²x=0 однородное, разделим на cos²x
2sin²x+3sinxcosx+cos²x=0 | : cos²x
2tg²x+3tgx+1=0
D=9-4*2*1=1
tgx=(-3-1)/4=-1 x=-π/4+πn, n∈Z
tgx=(-3+1)/4=-1/2 x=-arctg1/2+πk, k∈Z