постройте схематический график и опишите свойства функции : y= -3(x+3)^2 -2 2) Постройте параболу, найдите ее ось симметрии и вершину, укажите множество значений функций: y= -x² + 4
Обозначим скорость автомобиля через Х км/ч. До встречи с другим автомобилем он путь Х*1=Х км. Следовательно второй автомобиль путь до встречи 100-Х. Время в пути из города в город первого автомобиля равно 100/Х ч. Время в пути из города в город второго автомобиля равно 100/(100-Х). Разница во времени по условию 50 мин или 5,6 ч. Пусть скорость первого больше скорости второго, тогда второй ехал на 50 мин дольше. Составим уравнение. 100/Х+5/6=100/(100-Х). После освобождения от знаменателей получишь квадратное уравнение 60000-600х-600х-500х+5х^2=0. Получаем x^2-340x+12000=0 Находим корни Х1=40, Х2=300. Нам подходит Х=40 к/ч. Скорость второго - 30 км/ч
как в первом, так и во втором случае степень выражения четная, от сюда следует, что перемножения выражения на себя будет четное число раз. То есть при положительных значениях выражения они останутся положительными, а при отрицательных - на - будет давать + .
Предположим что х=-1 тогда первое выражение будет (-1)*(-1)*(-1)*(-1) попарное перемножение -1 даст +1 в обоих парах и как следствие положительный результат, также и со вторым выражением, каким бы не был икс выражение даже если станет отрицательным, при возведении в четную степень минус уйдет из-за перемножения двух отрицательных чисел.
До встречи с другим автомобилем он путь Х*1=Х км.
Следовательно второй автомобиль путь до встречи 100-Х.
Время в пути из города в город первого автомобиля равно 100/Х ч.
Время в пути из города в город второго автомобиля равно 100/(100-Х).
Разница во времени по условию 50 мин или 5,6 ч. Пусть скорость первого больше скорости второго, тогда второй ехал на 50 мин дольше. Составим уравнение.
100/Х+5/6=100/(100-Х).
После освобождения от знаменателей получишь квадратное уравнение 60000-600х-600х-500х+5х^2=0.
Получаем x^2-340x+12000=0
Находим корни Х1=40, Х2=300. Нам подходит Х=40 к/ч.
Скорость второго - 30 км/ч
как в первом, так и во втором случае степень выражения четная, от сюда следует, что перемножения выражения на себя будет четное число раз. То есть при положительных значениях выражения они останутся положительными, а при отрицательных - на - будет давать + .
Предположим что х=-1 тогда первое выражение будет (-1)*(-1)*(-1)*(-1) попарное перемножение -1 даст +1 в обоих парах и как следствие положительный результат, также и со вторым выражением, каким бы не был икс выражение даже если станет отрицательным, при возведении в четную степень минус уйдет из-за перемножения двух отрицательных чисел.