y=-1,5x² на отрезке [-4;-2]
y = -1,5 x² - квадратичная функция, график - парабола, ветви направлены вниз (a=-1,5 < 0). Максимальное значение принимает в точке вершины параболы.
x₀ = 0; y₀ = 0 - координаты вершины параболы из уравнения функции.
x₀ ∉ [-4; -2] ⇒ наибольшее и наименьшее значения функции на границах отрезка.
x₁ = -4; y₁ = -1,5 x² = -1,5 · (-4)² = -1,5 · 16 = -24
x₂ = -2; y₂ = -1,5 x² = -1,5 · (-2)² = -1,5 · 4 = -6
ответ : наибольшее значение y = -6;
наименьшее значение y = -24
ОДЗ:
+ - +
---------(0)----------(3)-------------
/////////// ////////////////
∈ ∞ ∪ ∞
ответ:
ОДЗ:
Замена:
или
или
или
ответ:
ОДЗ:
+ - +
---------(-2)----------(0)-------------
/////////// ////////////////
∈ ∞ ∪ ∞
+ - +
----------(-3)-----------(1)--------------
/////////////////
С учётом ОДЗ получаем
ответ: ∪
ОДЗ:
С учётом ОДЗ получаем
ответ:
y=-1,5x² на отрезке [-4;-2]
y = -1,5 x² - квадратичная функция, график - парабола, ветви направлены вниз (a=-1,5 < 0). Максимальное значение принимает в точке вершины параболы.
x₀ = 0; y₀ = 0 - координаты вершины параболы из уравнения функции.
x₀ ∉ [-4; -2] ⇒ наибольшее и наименьшее значения функции на границах отрезка.
x₁ = -4; y₁ = -1,5 x² = -1,5 · (-4)² = -1,5 · 16 = -24
x₂ = -2; y₂ = -1,5 x² = -1,5 · (-2)² = -1,5 · 4 = -6
ответ : наибольшее значение y = -6;
наименьшее значение y = -24