Прямоугольный треугольник с катетом 5 и гипотенузой 13 относится к Пифагоровым тройкам с отношением сторон 5:12:13. ⇒ АС=12 ( можно найти и по т.Пифагора)
sin∠CAB=ВС/АВ=5/13
В прямоугольном ∆ СНА ∠CAH=∠CAB ⇒ CH/AC=5/13
CH=5•12:13
CH=60/13
* * *
2
Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и отрезком гипотенузы, заключенным между катетом и высотой, проведенной из вершины прямого угла.
1) Обозначит коэффициент пропорциональности через k , тогда измерения прямоугольного параллелепипеда будут 2k , 3k , 4k . Объём равен произведению трёх измерений V = a * b * c 2k * 3k * 4k = 192 24k³ = 192 k³ = 8 k = 2 Тогда его измерения будут 2 * 2 = 4 дм 2 * 3 = 6 дм 2 * 4 = 8 дм
2) a - длина b - ширина c - высота Первоначальный объём равен V = a * b * c = 4 * 6 * 8 = 192 дм³ Длина стала равна 4 + 2 = 6 дм, а ширина 6 + 2 = 8 дм Объём стал равен V = 6 * 8 * 8 = 384 дм³ Объём увеличился на 384 - 192 = 192 дм³
Пусть дан ∆ АВС, ∠С=90°. АВ=13; ВС=5.
Решить эту задачу можно разными .
1.
Прямоугольный треугольник с катетом 5 и гипотенузой 13 относится к Пифагоровым тройкам с отношением сторон 5:12:13. ⇒ АС=12 ( можно найти и по т.Пифагора)
sin∠CAB=ВС/АВ=5/13
В прямоугольном ∆ СНА ∠CAH=∠CAB ⇒ CH/AC=5/13
CH=5•12:13
CH=60/13
* * *
2
Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и отрезком гипотенузы, заключенным между катетом и высотой, проведенной из вершины прямого угла.
СВ²=АВ•BH
25=13•BH⇒
BH=25/13
CH=√(BC²-BH²)=√(25•144:169)=60/13=4⁸/₁₃
* * *
При желании можно найти СН и другими .
V = a * b * c
2k * 3k * 4k = 192
24k³ = 192
k³ = 8
k = 2
Тогда его измерения будут
2 * 2 = 4 дм 2 * 3 = 6 дм 2 * 4 = 8 дм
2) a - длина b - ширина c - высота
Первоначальный объём равен
V = a * b * c = 4 * 6 * 8 = 192 дм³
Длина стала равна 4 + 2 = 6 дм, а ширина 6 + 2 = 8 дм
Объём стал равен
V = 6 * 8 * 8 = 384 дм³
Объём увеличился на 384 - 192 = 192 дм³