Так как прямая у = 1 проходит выше гиперболы у = 1 / х на отрезке 1..4, то для определения площади надо интегрировать функцию у = 1 - (1/х) в пределах 1..4. Интегрируем почленно:Интеграл от константы есть эта константа, умноженная на переменную интегрирования:∫1dx=xИнтеграл от произведения функции на константу есть эта константа на интеграл от данной функции:∫−1xdx=−∫1xdxИнтеграл 1x есть log(x).Таким образом, результат будет: −log(x)Результат есть: x−log(x)Добавляем постоянную интегрирования:x−log(x)+constantответ:x−log(x)+constant Подставив пределы, получим S = 3 - ln 4 = 1,61371 кв.ед.
Если пристань В выше по течению, то от А до В катер шел против течения. Скорость катера обозначим v, скорость по течению v+3, против v-3. AB/(v-3) = 11,5 Если катер не дойдет 100 км до В и повернет обратно в А, то он придет в А за тоже время, то есть 11,5 часов. (AB-100)/(v-3) + (AB-100)/(v+3) = 11,5 Получили систему { AB = 11,5*(v-3) { (11,5*(v-3) - 100)/(v-3) + (11,5*(v-3) - 100)/(v+3) = 11,5 Умножаем всё на (v-3)(v+3) 11,5*(v-3)(v+3) - 100(v+3) + 11,5*(v-3)^2 - 100(v-3) = 11,5*(v-3)(v+3) 11,5*(v^2-6v+9) - 100v - 300 - 100v + 300 = 0 Приводим подобные и умножаем всё на 2 23v^2 - 138v + 207 - 400v = 0 23v^2 - 538v + 207 = 0 D/4 = (b/2)^2 - ac = 269^2 - 23*207 = 67600 = 260^2 v1 = (-b/2 - √(D/4)) / a = (269 - 260)/23 = 9/23 - слишком мало, не подходит. v2 = (269 + 260)/23 = 529/23 = 23 - подходит. ответ: v = 23 км/ч
у = 1 - (1/х) в пределах 1..4.
Интегрируем почленно:Интеграл от константы есть эта константа, умноженная на переменную интегрирования:∫1dx=xИнтеграл от произведения функции на константу есть эта константа на интеграл от данной функции:∫−1xdx=−∫1xdxИнтеграл 1x есть log(x).Таким образом, результат будет: −log(x)Результат есть: x−log(x)Добавляем постоянную интегрирования:x−log(x)+constantответ:x−log(x)+constant
Подставив пределы, получим S = 3 - ln 4 = 1,61371 кв.ед.
Скорость катера обозначим v, скорость по течению v+3, против v-3.
AB/(v-3) = 11,5
Если катер не дойдет 100 км до В и повернет обратно в А,
то он придет в А за тоже время, то есть 11,5 часов.
(AB-100)/(v-3) + (AB-100)/(v+3) = 11,5
Получили систему
{ AB = 11,5*(v-3)
{ (11,5*(v-3) - 100)/(v-3) + (11,5*(v-3) - 100)/(v+3) = 11,5
Умножаем всё на (v-3)(v+3)
11,5*(v-3)(v+3) - 100(v+3) + 11,5*(v-3)^2 - 100(v-3) = 11,5*(v-3)(v+3)
11,5*(v^2-6v+9) - 100v - 300 - 100v + 300 = 0
Приводим подобные и умножаем всё на 2
23v^2 - 138v + 207 - 400v = 0
23v^2 - 538v + 207 = 0
D/4 = (b/2)^2 - ac = 269^2 - 23*207 = 67600 = 260^2
v1 = (-b/2 - √(D/4)) / a = (269 - 260)/23 = 9/23 - слишком мало, не подходит.
v2 = (269 + 260)/23 = 529/23 = 23 - подходит.
ответ: v = 23 км/ч