Выражение 8х + 1/x может принимать значения -9 и 9.
Объяснение:
64 х² + 1 / x² = 65 умножим на x², получим 64 у⁴ + 1 = 65 у².
Сделаем замену переменной х² = t, тогда
64 t² - 65 t + 1 = 0
D = √(-65)² - 4 × 64 × 1 =√ 4225 - 256 =√ 3939, √D = √3939 = 63.
t₁ = (65 - 63) / 2 × 64 = 1 / 64, x₁₂ = ± 1 / 8
t₂ = (65 +63) / 2 × 64 = 1, x₃₄ = ± 1
При х = 1 / 8 получим 8 × 1/8 + 1 : 1/8 = 1 + 8 = 9,
При х = - 1 / 8 получим 8 × ( - 1/8) + 1 :( - 1/8) = - 1 - 8 = - 9,
При х = 1 получим 8 × 1 + 1 : 1 = 8 + 1 = 9,
При х = - 1 получим 8 × ( -1) + 1 : ( - 1) = - 8 - 1 = -9.
5875
8575
Запишем число в виде:
abcd
Признак делимости на 25:
Число делятся на 25, если оно заканчивается двумя нулями или цифрами, выражающими число, которое делится на 25.
Итак, наше число может выглядеть так:
1) ab00
2) ab25
3) ab50
4) ab75
Проанализируем эти числа.
1) Это число не подходит, поскольку сумма цифр
S₁ = a + b + 0 + 0 = a + b = 25
Но максимальное значение a=9; b=9; a+b = 9+9 = 18≠25
2) И это число не подходит, поскольку сумма цифр
S₁ = a + b + 2 + 5 = a + b + 7
Или
a+b = 25-7 = 18
Единственный вариант:
a=9; b=9. Проверим произведение:
9·9·2·5 = 810. Но 810 не делится нацело на 25
3)
Не годится и вариант ab50
поскольку a+b+5+0 = 25
a+b=20, чего быть не может.
Итак, у нас остался четвертый вариант:
ab75, то есть искомое число заканчивается на 75.
Находим сумму цифр:
a+b+7+5 = a+b+12
a+b = 25-12 = 13
Здесь всего 6 вариантов, которые мы и проверим:
9+4 = 13; 4+9 = 13; 9·4·7·5 = 1260 не делится на 25.
8+5 = 13; 5+8 = 13; 5·8·7·5 = 1400 делится на 25
7+6 = 13; 6+7 = 13; 7·6·7·5 = 1260 не делится на 25.
Итак, мы нашли два четырехзначных восхитительных числа:
5875 и
Выражение 8х + 1/x может принимать значения -9 и 9.
Объяснение:
64 х² + 1 / x² = 65 умножим на x², получим 64 у⁴ + 1 = 65 у².
Сделаем замену переменной х² = t, тогда
64 t² - 65 t + 1 = 0
D = √(-65)² - 4 × 64 × 1 =√ 4225 - 256 =√ 3939, √D = √3939 = 63.
t₁ = (65 - 63) / 2 × 64 = 1 / 64, x₁₂ = ± 1 / 8
t₂ = (65 +63) / 2 × 64 = 1, x₃₄ = ± 1
При х = 1 / 8 получим 8 × 1/8 + 1 : 1/8 = 1 + 8 = 9,
При х = - 1 / 8 получим 8 × ( - 1/8) + 1 :( - 1/8) = - 1 - 8 = - 9,
При х = 1 получим 8 × 1 + 1 : 1 = 8 + 1 = 9,
При х = - 1 получим 8 × ( -1) + 1 : ( - 1) = - 8 - 1 = -9.
5875
8575
Объяснение:
Запишем число в виде:
abcd
Признак делимости на 25:
Число делятся на 25, если оно заканчивается двумя нулями или цифрами, выражающими число, которое делится на 25.
Итак, наше число может выглядеть так:
1) ab00
2) ab25
3) ab50
4) ab75
Проанализируем эти числа.
1) Это число не подходит, поскольку сумма цифр
S₁ = a + b + 0 + 0 = a + b = 25
Но максимальное значение a=9; b=9; a+b = 9+9 = 18≠25
2) И это число не подходит, поскольку сумма цифр
S₁ = a + b + 2 + 5 = a + b + 7
Или
a+b = 25-7 = 18
Единственный вариант:
a=9; b=9. Проверим произведение:
9·9·2·5 = 810. Но 810 не делится нацело на 25
3)
Не годится и вариант ab50
поскольку a+b+5+0 = 25
a+b=20, чего быть не может.
Итак, у нас остался четвертый вариант:
ab75, то есть искомое число заканчивается на 75.
Находим сумму цифр:
a+b+7+5 = a+b+12
a+b = 25-12 = 13
Здесь всего 6 вариантов, которые мы и проверим:
9+4 = 13; 4+9 = 13; 9·4·7·5 = 1260 не делится на 25.
8+5 = 13; 5+8 = 13; 5·8·7·5 = 1400 делится на 25
7+6 = 13; 6+7 = 13; 7·6·7·5 = 1260 не делится на 25.
Итак, мы нашли два четырехзначных восхитительных числа:
5875 и
8575