В задаче мы имеем дело с упорядоченной выборкой без повторений. Каждая буква выбирается последовательно, это значит, что буква К выбирается из четырех возможных (О Т К Р ) и вероятность выбора первой буквы К равна
Р(к) = 1/4.
Буква Р выбирается из оставшихся трех (О Т Р ) и вероятность выбора второй буквы Р равна Р(р) = 1/3.
Далее выбираем букву О из оставшихся двух (О Т) и вероятность выбора третьей буквы О равна Р(о) = 1/2.
Тогда для буквы Т останется вероятность выбора Р(т) = 1.
Таким образом, вероятность искомого события равна произведению вероятностей выбора каждой отдельной буквы:
Нехай І маляр може пофарбувати фасад будинку за х годин, тоді ІІ - за (х + 5) годин. Продуктивності роботи І і ІІ малярів, відповідно, дорівнюють 1/х і 1/(х + 5), а під час сумісної роботи вона рівна 1/х + 1/(х + 5), що становить 1/6. Складаємо рівняння.
1/х + 1/(х + 5) = 1/6|·6x(x + 5), де х ≠ 0; х ≠ -5.
6(х + 5) + 6х = х(х + 5)
6х + 30 + 6х = х² + 5х;
х² + 5х - 12x - 30 = 0;
х² - 7x - 30 = 0;
x₁ = 10; x₂ = -3 - не задовольняє умову задачі.
Отже, І маляр може пофарбувати фасад будинку за 10 годин, а ІІ - за 10 + 5 = 15 годин.
В задаче мы имеем дело с упорядоченной выборкой без повторений. Каждая буква выбирается последовательно, это значит, что буква К выбирается из четырех возможных (О Т К Р ) и вероятность выбора первой буквы К равна
Р(к) = 1/4.
Буква Р выбирается из оставшихся трех (О Т Р ) и вероятность выбора второй буквы Р равна Р(р) = 1/3.
Далее выбираем букву О из оставшихся двух (О Т) и вероятность выбора третьей буквы О равна Р(о) = 1/2.
Тогда для буквы Т останется вероятность выбора Р(т) = 1.
Таким образом, вероятность искомого события равна произведению вероятностей выбора каждой отдельной буквы:
Р = Р(к)*Р(р)*Р(о)*Р(т) = 1/4 * 1/3 * 1/2 * 1 = 1/24
ОТВЕТ: 1/24.
Нехай І маляр може пофарбувати фасад будинку за х годин, тоді ІІ - за (х + 5) годин. Продуктивності роботи І і ІІ малярів, відповідно, дорівнюють 1/х і 1/(х + 5), а під час сумісної роботи вона рівна 1/х + 1/(х + 5), що становить 1/6. Складаємо рівняння.
1/х + 1/(х + 5) = 1/6|·6x(x + 5), де х ≠ 0; х ≠ -5.
6(х + 5) + 6х = х(х + 5)
6х + 30 + 6х = х² + 5х;
х² + 5х - 12x - 30 = 0;
х² - 7x - 30 = 0;
x₁ = 10; x₂ = -3 - не задовольняє умову задачі.
Отже, І маляр може пофарбувати фасад будинку за 10 годин, а ІІ - за 10 + 5 = 15 годин.
Відповідь: 10 год; 15 год.