Практическая работа.
Тема: Производная функции
Вариант 1
1
Найти производную функции в точке х
0
:
π
2
а) у= 3 х
, х
0
=1 в) у= -2sin x, х
0
=
4
π
б) у= cos x, х
0
=
6
г) у= 2 + √ х , х
0
= 4
m
2 Приведя функцию к виду у = k · x
( m ¿ Z ) , найти производную
2
1
х5
3
2
а) у= 3 х
х
, б) у= х2
, в) у=
3х5
, г) у=
175
.
3 Используя формулу производной от суммы, найти производную
3
2
2+5х+ 1
х −5 х +1
х
2
а) у= х
, б) у= х ( х
−5 х+1) , в) у =
х
.
4 Используя формулы производной от произведения и частного, найти производную
х2
а) у = x ·cos x , б) у =
1+ х .
5 Используя правило дифференцирования сложной функции, найти производную
π
2−3 х+1)7
2
2
a) у = ( х
, б) у = √ х −3 х+1
, в) у = tg ( 3x -
4
), г) y = cos
х .
Вариант 2
1.Найти производную функции в точке х
0
:
π
3
а) у= 2 х
, х
0
= - 1 в) у= -2 cos x, х
0
=
4
π
б) у= sin x , х
0
=
3
г) у = 1+2 · √ х , х
0
= 9
m
2 Приведя функцию к виду у = k · x
( m ¿ Z ) , найти производную
3
1
х6
3
а) у= 2 х
х, б) у= х3
, в) у=
2 х4
, г) у=
156
3 Используя формулу производной от суммы, найти производную
1
х5
4
3+4 х2−
+4 х −1
3
2
а) у= х
х2
, б) у= х ( х
+4 х −1)
2
, в) у =
х
.
4 Используя формулы, найти производную
х
2
а) у = x · sin x , б) у =
1+ х
.
5 Используя правило дифференцирования сложной функции, найти производную
π
2
a) у = ( х
+4 х−1 )6
2
, б) у = √ х +4 х−1
3
2
, в) у =ctg ( 2x +
), г) y = sin
х .
(
a
+
b
)
n
=
∑
k
=
0
n
(
n
k
)
a
n
−
k
b
k
=
(
n
0
)
a
n
+
(
n
1
)
a
n
−
1
b
+
⋯
+
(
n
k
)
a
n
−
k
b
k
+
⋯
+
(
n
n
)
b
n
(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n - k} b^k = {n\choose 0}a^n + {n\choose 1}a^{n - 1}b + \dots + {n\choose k}a^{n - k}b^k + \dots + {n\choose n}b^n
где
(
n
k
)
=
n
!
k
!
(
n
−
k
)
!
=
C
n
k
{n\choose k}=\frac{n!}{k!(n - k)!}= C_n^k — биномиальные коэффициенты,
n
n — неотрицательное целое число.
В таком виде эта формула была известна ещё индийским и персидским математикам; Ньютон вывел формулу бинома Ньютона для более общего случая, когда показатель степени — произвольное действительное (или даже комплексное) число.
но к примеру А на первые 10 мин, и второй на первые 10 мин=1/6*1/6;
так же на вторые 10 мин вероятность встречи 1/6*1/6 и так для третьего, четвортого, пятого и шестого десятка минут соответственно( мы не считаем, что один приходит, когда другой уходит)
прпросуммируем результат
то-есть 1/6
сдесь задача аналогична тому, с кокой вероятностью выпадет на двух игральных костях две одинаковых цифры
к примеру для шестёрок 1/36, для пятёрок 1/36,и т.д., всего 6, просуммировав, получим 1/6