Правда хотя бы с одним-то. 1)При каких значениях переменной имеет смысл выражение х-3\2х^2- 5х+2 2)Представьте в виде степени с основанием x выражение |x^5|^-3 : х^-9
План действий такой: 1) ищем производную 2) приравниваем её к нулю и решаем уравнение 3) полученные корни ставим на числовой прямой и определяем знак производной на каждом участке 4) делаем выводы: а) где плюс, там возрастание, где минус - убывание, точка, при переходе через которую производная меняет знак с + на -, это точка максимума, наоборот - точка минимума. начали? 1) производная равна(-2х(х +2) - ( 3 - х²)·1)/(х + 2)² 2) ( -2х² - 4х - 3 + х² )/(х + 2)² = 0 | ·(х + 2 ) ≈ 0 -2х² - 4х -3 +х² = 0 -х² -4х -3 = 0 х² + 4х + 3 = 0 х1 = -1; х2 = -3 3) -∞ + -3 - -1 + +∞ 4) функция возрастает при х∈( -∞; -3)∨(-1; +∞) функция убывает при х ∈(-3; -1) х = -3 точка мак4симума х = -1 точка минимума.
C18=-7,2 + (18-1) * 0,6
c18=-7,2 + 17*0,6
c18=-7,2+10,2
c18=3
б) Cn=C1+(n-1)d ... n=18, c1=5,6, c2=4,8
d=c2-c1
d=4,8-5,6
d=-0,8
c18=5,6+(18-1)*(-0,8)
c18=5,6+17*(-0,8)
c18=5,6-13,6
c18=-8
2)k10+2k3=-11,85
k10=k1+9d k3=k1+2d
k1+9d-2(k1+2d)=-11,85
k1+9d-2k1-4d=-11,85
-k1+5d=-11,85 (подставляем известное значение k1)
-6,2+5d=-11,85
5d=-11,85+6,2
5d=-5,65
d=-1,13
d-разность
3)18-3,6
18-(-3,6)=21,6 - это (4+1)d
d=21,6/5=4,32
-3,6+d=-3,6+4,32=0,72 -1 число
0,72+d=0,72+4,32=5,04 - 2 число
5,04+d=5,04+4,32=9,36 - 3 число
9,36+d=9,36+4,32=13,68 -4 число
Все, вроде