При умножении степеней с одинаковыми основаниями основание остаётся без изменений, а показатели степеней складываются.
При делении степеней с одинаковыми основаниями основание остаётся без изменений, а из показателя степени делимого вычитают показатель степени делителя. (Проще говоря, вычитаются).
1)0,6¹³:0,6¹¹=0,6¹³⁻¹¹=0,6²=0,6*0,6=0,36
2)(-5 и 3/7)²²: (-5 и 3/7)²¹=(-5 и 3/7)²²⁻²¹=(-5 и 3/7)¹= -5 и 3/7
Тогда модуль будем раскрывать на интервалах: 1) 2) 3)
Значит, на первом интервале строим прямую у=х, сдвинутую на 8 единиц вверх; на втором - прямую у=-х, сдвинутую на 2 единицы вверх; на третьем - прямую у=х.
Прямая y=m параллельна оси х и проходит через точку (m; 0).
Проанализировав взаимное расположение графиков получим: - при m<1 - 1 пересечение - при m=1 - 2 пересечения - при 1<m<5 - 3 пересечения - при m=5 - 2 пересечения - при m>5 - 1 пересечение
Объяснение:
При умножении степеней с одинаковыми основаниями основание остаётся без изменений, а показатели степеней складываются.
При делении степеней с одинаковыми основаниями основание остаётся без изменений, а из показателя степени делимого вычитают показатель степени делителя. (Проще говоря, вычитаются).
1)0,6¹³:0,6¹¹=0,6¹³⁻¹¹=0,6²=0,6*0,6=0,36
2)(-5 и 3/7)²²: (-5 и 3/7)²¹=(-5 и 3/7)²²⁻²¹=(-5 и 3/7)¹= -5 и 3/7
3)(-1,21)²⁴: (-1,21)²³=(-1,21)²⁴⁻²³=(-1,21)¹= -1,21
4)(pg)¹⁸: (pg)⁸: (pg)³=(pg)⁷
а)(pg)¹⁸: (pg)⁸=(pg)¹⁸⁻⁸= (pg)¹⁰
б)(pg)¹⁰: (pg)³=(pg)¹⁰⁻³= (pg)⁷
Тогда модуль будем раскрывать на интервалах:
1)
2)
3)
Значит, на первом интервале строим прямую у=х, сдвинутую на 8 единиц вверх; на втором - прямую у=-х, сдвинутую на 2 единицы вверх; на третьем - прямую у=х.
Прямая y=m параллельна оси х и проходит через точку (m; 0).
Проанализировав взаимное расположение графиков получим:
- при m<1 - 1 пересечение
- при m=1 - 2 пересечения
- при 1<m<5 - 3 пересечения
- при m=5 - 2 пересечения
- при m>5 - 1 пересечение
Подходящие случаи: m=1 и m=5
ответ: 1 и 5