а) График которой проходит через точку с координатами А(а; 3√5). Найдите значение а.
Нужно в уравнение подставить известные значения х и у (координаты точки А):
3√5 = √а
(3√5)² = (√а)²
9*5 = а
а=45;
б) проходит ли график этой функции через точки А(36; -6), B(0,81; 0,9).
Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение. Если левая часть равна правой, то принадлежит, и наоборот.
1) А(36; -6)
-6 = ±√36
-6 = -6, проходит.
2) B(0,81; 0,9)
0,9 = ±√0,81
0,9 = 0,9, проходит.
в) Если х∈[4; 8], то какие значения будет принимать данная функция?
1) значение функции, если значение аргумента равно 3;
Чтобы найти значение у, нужно известное значение х подставить в уравнение и вычислить у:
х=3
у= -2*3²-8= -18-8= -26
2) значение аргумента, при котором значение функции равно -6;
Чтобы найти значение х, нужно известное значение у подставить в уравнение и вычислить х:
у= -6
-6= -2х²-8
2х²= -8+6
2х²= -2
х²= -1 не существует х, при котором у= -6
3) проходит ли график функции через точку А(-3; 10);
Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение, если левая часть будет равна правой, значит, точка принадлежит графику и наоборот.
10= -2*(-3)-8
10≠ -2, не принадлежит.
4) координаты точек пересечения с осями координат.
График пересекает ось Оу при х=0:
х=0
у=0-8= -8
Координаты пересечения графиком оси Оу (0; -8)
График пересекает ось Ох при у=0.
у=0
0= -2х²-8
2х²= -8
х²= -8 нет точек пересечения графика с осью Ох.
2. Постройте график функции y = 2х – 5.
Построить график. График линейной функции, прямая линия. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
y = 2x − 5
Таблица:
х -1 0 1
у -7 -5 -3
Пользуясь графиком, найдите:
1) значение функции, если значение аргумента равно -3; 2;
Чтобы найти значение у, нужно известное значение х подставить в уравнение и вычислить у:
х= -3
у=2*(-3)-5= -11 при х= -3 у= -11
х=2
у=2*2-5= -1 при х=2 у= -1
2) значение аргумента, при котором значение функции равно -11; 1;
Чтобы найти значение х, нужно известное значение у подставить в уравнение и вычислить х:
у= -11
-11=2х-5
-2х= -5+11
-2х=6
х= -3
у=1
1=2х-5
-2х= -5-1
-2х= -6
х=3
3) значение аргумента, при которых функция принимает положительные значения.
Найти х, при котором у>0
Согласно графика, у>0 при х>2,5 х∈(2,5, ∞)
3. При каком значении k график функции у = kx +5 проходит через точку
D (6; -19)?
Нужно подставить в уравнение известные значения х и у (координаты точки D) и вычислить k:
-19=k*6+5
-19=6k+5
-6k=5+19
-6k=24
k= -4
4. Даны функции f(x)=2x-4 и g(x)= -x+2.
1) постройте их на одной координатной плоскости;
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
f(x)=2x-4 g(x)= -x+2
Таблицы:
х -1 0 1 х -1 0 1
у -6 -4 -2 у 3 2 1
2) найдите точку пересечения;
Координаты точки пересечения, согласно графика, (2; 0)
В решении.
Объяснение:
Дана функция у=√х:
а) График которой проходит через точку с координатами А(а; 3√5). Найдите значение а.
Нужно в уравнение подставить известные значения х и у (координаты точки А):
3√5 = √а
(3√5)² = (√а)²
9*5 = а
а=45;
б) проходит ли график этой функции через точки А(36; -6), B(0,81; 0,9).
Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение. Если левая часть равна правой, то принадлежит, и наоборот.
1) А(36; -6)
-6 = ±√36
-6 = -6, проходит.
2) B(0,81; 0,9)
0,9 = ±√0,81
0,9 = 0,9, проходит.
в) Если х∈[4; 8], то какие значения будет принимать данная функция?
у= √х
у=√4=2;
у=√8=√4*2=2√2;
При х∈ [4; 8] у∈ [2; 2√2].
с) y∈ [6; 13]. Найдите значение аргумента.
6 = √х
(6)² = (√х)²
х=36;
13 = √х
(13)² = (√х)²
х=169;
При х∈ [36; 169] y∈ [6; 13].
Объяснение:
Функция задана формулой у= -2x²-8.
Не выполняя построения, определите:
1) значение функции, если значение аргумента равно 3;
Чтобы найти значение у, нужно известное значение х подставить в уравнение и вычислить у:
х=3
у= -2*3²-8= -18-8= -26
2) значение аргумента, при котором значение функции равно -6;
Чтобы найти значение х, нужно известное значение у подставить в уравнение и вычислить х:
у= -6
-6= -2х²-8
2х²= -8+6
2х²= -2
х²= -1 не существует х, при котором у= -6
3) проходит ли график функции через точку А(-3; 10);
Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение, если левая часть будет равна правой, значит, точка принадлежит графику и наоборот.
10= -2*(-3)-8
10≠ -2, не принадлежит.
4) координаты точек пересечения с осями координат.
График пересекает ось Оу при х=0:
х=0
у=0-8= -8
Координаты пересечения графиком оси Оу (0; -8)
График пересекает ось Ох при у=0.
у=0
0= -2х²-8
2х²= -8
х²= -8 нет точек пересечения графика с осью Ох.
2. Постройте график функции y = 2х – 5.
Построить график. График линейной функции, прямая линия. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
y = 2x − 5
Таблица:
х -1 0 1
у -7 -5 -3
Пользуясь графиком, найдите:
1) значение функции, если значение аргумента равно -3; 2;
Чтобы найти значение у, нужно известное значение х подставить в уравнение и вычислить у:
х= -3
у=2*(-3)-5= -11 при х= -3 у= -11
х=2
у=2*2-5= -1 при х=2 у= -1
2) значение аргумента, при котором значение функции равно -11; 1;
Чтобы найти значение х, нужно известное значение у подставить в уравнение и вычислить х:
у= -11
-11=2х-5
-2х= -5+11
-2х=6
х= -3
у=1
1=2х-5
-2х= -5-1
-2х= -6
х=3
3) значение аргумента, при которых функция принимает положительные значения.
Найти х, при котором у>0
Согласно графика, у>0 при х>2,5 х∈(2,5, ∞)
3. При каком значении k график функции у = kx +5 проходит через точку
D (6; -19)?
Нужно подставить в уравнение известные значения х и у (координаты точки D) и вычислить k:
-19=k*6+5
-19=6k+5
-6k=5+19
-6k=24
k= -4
4. Даны функции f(x)=2x-4 и g(x)= -x+2.
1) постройте их на одной координатной плоскости;
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
f(x)=2x-4 g(x)= -x+2
Таблицы:
х -1 0 1 х -1 0 1
у -6 -4 -2 у 3 2 1
2) найдите точку пересечения;
Координаты точки пересечения, согласно графика, (2; 0)
3) при каких значениях x f(x)<g(x)
Решить неравенство: 2х-4< -x+2
2x+x<2+4
3x<6
x<2
Вывод: f(x)<g(x) при х<2, х∈(- ∞, 2)