Подробное объяснение: 1) Ищем нули функции: первая скобка равна нулю при х=-2 вторая скобка равна нулю при х=4 2) Рисуем числовую ось и расставляем на ней найденные нули функции - точки -2 и 4 (-2)(4) Точки рисуем с пустыми кружочками ("выколотые"), т.к. неравенство у нас строгое (знак < )
3) Начинаем считать знаки на каждом интервале, начиная слева-направо. Для этого берём любую удобную для подсчёта точку из интервала, подставляем её вместо икс и считаем знак: 1. х=-100 -100+2 <0 знак минус -100-4 <0 знак минус минус*минус=плюс Ставим знак плюс в крайний левый интервал + (-2)(4)
2. аналогично, х=0 0+2 >0 знак плюс 0-4 <0 знак минус плюс*минус=минус + _ (-2)(4)
3. x=100 100+2>0 знак плюс 100-4>0 знак плюс плюс*плюс=плюс + - + (-2)(4)
Итак, знаки на интервалах мы расставили. Смотрим на знак неравенства: < 0 Значит, нам надо взять только те интервалы, где стоят минусы. В данном случае, такой интервал один (-2;4) Это и есть ответ.
Теперь краткая запись решения: (х+2)(х-4)<0 + - + (-2)(4)
1) F`(x)=3x²-6x-9 Находим точки, в которых производная обращается в нуль. F`(x)=0 3x²-6x-9=0 3·(x²-2x-3)=0 x²-2x-3=0 D=16 x₁=(2-4)/2=-1 x₂=(2+4)/2=3 - точки возможных экстремумов Обе точки принадлежат указанному промежутку Не проверяя какая из них точка максимума, какая точка минимума, просто находим F(-4)=(-4)³-3·(-4)²-9·(-4)+35=-64-48+36+35=-41 наименьшее F(-1)=(-1)³-3·(-1)²-9·(-1)+35=-1-3+9+35=40 - наибольшее F(3)=(3)³-3·(3)²-9·(3)+35=8
F(4)=(4)³-3·(4)²-9·(4)+35=64-48-36+35=15
выбираем из них наибольшее и наименьшее
2) F`(x)=3x²+18x-24 Находим точки, в которых производная обращается в нуль. F`(x)=0 3x²+18x+24=0 3·(x²+6x+8)=0 x²+6x+8=0 D=36-4·8=36-32=4 x₁=(-6-2)/2=-4 x₂=(-6+2)/2=-2 - точки возможных экстремумов Обе точки не принадлежат указанному промежутку
Подробное объяснение:
1) Ищем нули функции:
первая скобка равна нулю при х=-2
вторая скобка равна нулю при х=4
2) Рисуем числовую ось и расставляем на ней найденные нули
функции - точки -2 и 4
(-2)(4)
Точки рисуем с пустыми кружочками ("выколотые"), т.к.
неравенство у нас строгое (знак < )
3) Начинаем считать знаки на каждом интервале, начиная
слева-направо. Для этого берём любую удобную для подсчёта
точку из интервала, подставляем её вместо икс и считаем знак:
1. х=-100 -100+2 <0 знак минус
-100-4 <0 знак минус
минус*минус=плюс
Ставим знак плюс в крайний левый интервал
+
(-2)(4)
2. аналогично,
х=0 0+2 >0 знак плюс
0-4 <0 знак минус
плюс*минус=минус
+ _
(-2)(4)
3. x=100 100+2>0 знак плюс
100-4>0 знак плюс
плюс*плюс=плюс
+ - +
(-2)(4)
Итак, знаки на интервалах мы расставили.
Смотрим на знак неравенства: < 0 Значит, нам надо взять
только те интервалы, где стоят минусы.
В данном случае, такой интервал один (-2;4)
Это и есть ответ.
Теперь краткая запись решения:
(х+2)(х-4)<0
+ - +
(-2)(4)
x∈(-2;4)
ответ: (-2;4)
F`(x)=3x²-6x-9
Находим точки, в которых производная обращается в нуль.
F`(x)=0
3x²-6x-9=0
3·(x²-2x-3)=0
x²-2x-3=0
D=16
x₁=(2-4)/2=-1 x₂=(2+4)/2=3 - точки возможных экстремумов
Обе точки принадлежат указанному промежутку
Не проверяя какая из них точка максимума, какая точка минимума, просто находим
F(-4)=(-4)³-3·(-4)²-9·(-4)+35=-64-48+36+35=-41 наименьшее
F(-1)=(-1)³-3·(-1)²-9·(-1)+35=-1-3+9+35=40 - наибольшее
F(3)=(3)³-3·(3)²-9·(3)+35=8
F(4)=(4)³-3·(4)²-9·(4)+35=64-48-36+35=15
выбираем из них наибольшее и наименьшее
2)
F`(x)=3x²+18x-24
Находим точки, в которых производная обращается в нуль.
F`(x)=0
3x²+18x+24=0
3·(x²+6x+8)=0
x²+6x+8=0
D=36-4·8=36-32=4
x₁=(-6-2)/2=-4 x₂=(-6+2)/2=-2 - точки возможных экстремумов
Обе точки не принадлежат указанному промежутку
F(0)=10 - наименьшее
F(3)=3³+9·3²-24·3+10=46 - наибольшее