Чертёж ты уж как-нибудь сама, ладно? Параболу умеешь рисовать? Сначала нарисуй, а потом читай дальше. Готово? Ок, поехали.
Во-первых, нам нужно заметить, что эти две линии пересекаются в двух точках. Что же это за точки? Давай решим уравнение x^2 = x + 2 Увау! Квадратное. Ладно, дискриминант тоже сама выпиши, а я уж позволю себе решить его устно, и узнаю, что корни будут -1 и 2. По теореме Безу решил, если что.
Смотрим на чертёж ещё раз. Искомая фигура ограничена снизу параболой, а сверху прямой. И они пересекаются в точках -1 и 2. Эдакая получается долька.
Как же найти площадь дольки? Очень просто - нужно сначала взять площадь трапеции, имеющей вершинами две точки пересечения графиков, и две точки на оси ОХ с координатами -1 и 2. Для наглядности можно заштриховать наклонной штриховкой эту трапецию. Пусть это будет площадь S1.
А теперь возьмём площадь ПОД параболой, в тех же пределах, пусть это будет площадь S2. Разница S = S1 - S2 и будет ответом.
Ок, дело осталось за малым - найти S1 и S2. S1 ищем как учили в геометрии - произведение полусуммы оснований на высоту. Одно (левое ) основание у нас есть отрезок (-1;0) - (-1;1), и его длина равна 1. Второе (правое) основание есть отрезок (2;0) - (2;4), и его длина равна 4. Высота трапеции - отрезок (-1;0) - (2;0), его длина равна 3. Подставляем в формулу, получаем (1 + 4 ) / 2 * 3 = 7,5.
S2 ищем как учили в алгебре - первообразная в правой точке, минус первообразная в левой точке. Чему же равна первообразная для параболы? - это кубическая парабола, и её уравнение имеет вид F = 1/3 * x^3 Чему равно F(2)? F(2) = 1/3 * 2^3 = 8/3 Чему равно F(-1)? F(2) = 1/3 * (-1)^3 = -1/3 Чему равно F(2) - F(1) ? F(2) - F(1) = 8/3 - (-1/3) = 9/3 = 3.
Итак, мы пришли к тому, что S1 = 7,5, и S2 = 3 Отсюда получаем ответ: S = S1 - S2 = 7,5 - 3 = 4,5.
Так? Проверь за мной что не ошибся - доверяй, но проверяй.
1. Какая из пар чисел (-5;1); (1;4); (2;3) является решением системы уравнений:
2х-7у= -17
5х+у=13
Решить систему уравнений.
Выразим у через х во втором уравнении, подставим выражение в первое уравнение и вычислим х:
у=13-5х
2х-7(13-5х)= -17
2х-91+35х= -17
37х= -17+91
37х=74
х=74/37
х=2
у=13-5х
у=13-5*2
у=3
Решение системы уравнений (2; 3)
2. Решить графическим систему уравнений:
а) у+х=0
4х+у=6
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде преобразуем уравнения в более удобный для вычислений вид:
у+х=0 4х+у=6
у= -х у=6-4х
Таблицы:
х -1 0 1 х -1 0 1
у 1 0 -1 у 10 6 2
Согласно графика, координаты точки пересечения прямых (2; -2)
Решение системы уравнений (2; -2)
б)х+у= -1
3х+3у= -2
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде преобразуем уравнения в более удобный для вычислений вид:
х+у= -1 3х+3у= -2
у= -1-х 3у= -2-3х
у=(-2-3х)/3
Таблицы:
х -1 0 1 х -1 0 1
у 0 -1 -2 у 0,33 -0,67 -1,67
Согласно графика, прямые параллельны.
Система уравнений не имеет решения.
3.Пара чисел (3;-2) является решением системы уравнений
2х+ау=8
bх+3у=15
Найдите значения а и b.
Подставим известные значения х и у (решение системы) в уравнения:
Сначала нарисуй, а потом читай дальше. Готово? Ок, поехали.
Во-первых, нам нужно заметить, что эти две линии пересекаются в двух точках. Что же это за точки? Давай решим уравнение
x^2 = x + 2
Увау! Квадратное. Ладно, дискриминант тоже сама выпиши, а я уж позволю себе решить его устно, и узнаю, что корни будут -1 и 2. По теореме Безу решил, если что.
Смотрим на чертёж ещё раз. Искомая фигура ограничена снизу параболой, а сверху прямой. И они пересекаются в точках -1 и 2. Эдакая получается долька.
Как же найти площадь дольки? Очень просто - нужно сначала взять площадь трапеции, имеющей вершинами две точки пересечения графиков, и две точки на оси ОХ с координатами -1 и 2. Для наглядности можно заштриховать наклонной штриховкой эту трапецию. Пусть это будет площадь S1.
А теперь возьмём площадь ПОД параболой, в тех же пределах, пусть это будет площадь S2. Разница S = S1 - S2 и будет ответом.
Ок, дело осталось за малым - найти S1 и S2.
S1 ищем как учили в геометрии - произведение полусуммы оснований на высоту.
Одно (левое ) основание у нас есть отрезок (-1;0) - (-1;1), и его длина равна 1. Второе (правое) основание есть отрезок (2;0) - (2;4), и его длина равна 4. Высота трапеции - отрезок (-1;0) - (2;0), его длина равна 3. Подставляем в формулу, получаем (1 + 4 ) / 2 * 3 = 7,5.
S2 ищем как учили в алгебре - первообразная в правой точке, минус первообразная в левой точке. Чему же равна первообразная для параболы? - это кубическая парабола, и её уравнение имеет вид
F = 1/3 * x^3
Чему равно F(2)? F(2) = 1/3 * 2^3 = 8/3
Чему равно F(-1)? F(2) = 1/3 * (-1)^3 = -1/3
Чему равно F(2) - F(1) ? F(2) - F(1) = 8/3 - (-1/3) = 9/3 = 3.
Итак, мы пришли к тому, что S1 = 7,5, и S2 = 3
Отсюда получаем ответ: S = S1 - S2 = 7,5 - 3 = 4,5.
Так? Проверь за мной что не ошибся - доверяй, но проверяй.
1)Решение системы уравнений (2; 3);
2) а)Координаты точки пересечения прямых (2; -2)
Решение системы уравнений (2; -2)
2) б)Прямые параллельны.
Система уравнений не имеет решения.
3)а= -1; b=7.
Объяснение:
1. Какая из пар чисел (-5;1); (1;4); (2;3) является решением системы уравнений:
2х-7у= -17
5х+у=13
Решить систему уравнений.
Выразим у через х во втором уравнении, подставим выражение в первое уравнение и вычислим х:
у=13-5х
2х-7(13-5х)= -17
2х-91+35х= -17
37х= -17+91
37х=74
х=74/37
х=2
у=13-5х
у=13-5*2
у=3
Решение системы уравнений (2; 3)
2. Решить графическим систему уравнений:
а) у+х=0
4х+у=6
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде преобразуем уравнения в более удобный для вычислений вид:
у+х=0 4х+у=6
у= -х у=6-4х
Таблицы:
х -1 0 1 х -1 0 1
у 1 0 -1 у 10 6 2
Согласно графика, координаты точки пересечения прямых (2; -2)
Решение системы уравнений (2; -2)
б)х+у= -1
3х+3у= -2
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде преобразуем уравнения в более удобный для вычислений вид:
х+у= -1 3х+3у= -2
у= -1-х 3у= -2-3х
у=(-2-3х)/3
Таблицы:
х -1 0 1 х -1 0 1
у 0 -1 -2 у 0,33 -0,67 -1,67
Согласно графика, прямые параллельны.
Система уравнений не имеет решения.
3.Пара чисел (3;-2) является решением системы уравнений
2х+ау=8
bх+3у=15
Найдите значения а и b.
Подставим известные значения х и у (решение системы) в уравнения:
2*3+а*(-2)=8
b*3+3*(-2)=15
Выполняем необходимые действия:
6-2а=8
3b-6=15
Из уравнений вычисляем а и b:
-2а=8-6
-2а=2
а=2/-2
а= -1
3b=15+6
3b=21
b=21/3
b=7