Нам не очень нравится второй аргумент(x - π), поэтому применим соответствующую формулу приведения. Но сначала домножим аргумент на -1:
2cos³x + cos(π - x) = 0
Применяя формулы приведения ко второму аргументу, получаем более простое уравнение:
2cos³x - cos x = 0
Данное уравнение решается методом разложения на множители. Вынеся за скобки cos x:
cos x(2cos²x - 1) = 0
cos x = 0 или 2cos²x = 1
x = π/2 + πn, n∈Z cos²x = 1/2
(1 + cos 2x) / 2 = 1/2
1 + cos 2x = 1
cos 2x = 0
2x = π/2 + πk,k∈Z
x = π/4 + πk/2,k∈Z
Перед тем, как начать отбирать корни, сначала попробуем определить, какое решение является более общим, то есть, какое решение вмещает в себя решения другого уравнения. Для этого приравняем обе формулы и выразим одну переменную через другую:
π/2 + πn = π/4 + πk/2
Выразим предположим n через k, так как это сделать намного проще:
πn = π/4 - π/2 + πk/2
n = 1/4 - 1/2 + k/2
n = -1/4 + k/2 = k/2 - 1/4
Проанализировав это равенство приходим к выводу, что k > n. Значит, второе решение включает в себя также первое решение, а потому, решение π/4 + πk/2 и является более общим. По этой формуле и будем производить отбор корней.
Впихнём эту формулу в заданный интервал и решим двойное неравенство относительно k.
-π/2 < π/4 + πk/2 ≤ π/2
-3π/4 < πk/2 ≤ π/4
Разделим всё неравенство на π/2, получаем:
-1.5 < k ≤ 1
Значит, при k= -1; 0; 1 получатся корни, принадлежащие данному промежутку. Теперь посдтавим просто k в нашу формулу и найдём эти корни:
k = 0 x = π/4
k = 1 x = π/4 + π/2 = 3π/4
k = -1 x = π/4 - π/2 = -π/4
Это корни, принадлежащие данному промежутку. Здаачу мы решили.
1. Функция, заданная формулой f(x) = ax² + bx + c , где x и f(x) - переменные, а "a, b, c" - некоторые числа числа, причем a≠0.
2. Графиком квадратичной функции является парабола.
3. xєR - х принадлежит множеству действительных чисел (-∞;∞).
4. [0;∞) - для у=х². но с изменением формулы графика, может поменяться область значений. Например: если а<0, то её ветви будут направлены вниз, и тогда область значений будет (-∞;0], но это не единственный фактор влияющий на область значений. На пример "х²-а"
график будет опущен на "а" вниз по Оси Оу и наоборот если х²+а, график будет приподнят на "а" по Оси Оу.
5. Квадратное неравенство – это такое неравенство, которое имеет вид ax²+bx+c<0 ax²+ bх+c < 0, где a, b и c – некоторые числа, причем а≠0.
Нам не очень нравится второй аргумент(x - π), поэтому применим соответствующую формулу приведения. Но сначала домножим аргумент на -1:
2cos³x + cos(π - x) = 0
Применяя формулы приведения ко второму аргументу, получаем более простое уравнение:
2cos³x - cos x = 0
Данное уравнение решается методом разложения на множители. Вынеся за скобки cos x:
cos x(2cos²x - 1) = 0
cos x = 0 или 2cos²x = 1
x = π/2 + πn, n∈Z cos²x = 1/2
(1 + cos 2x) / 2 = 1/2
1 + cos 2x = 1
cos 2x = 0
2x = π/2 + πk,k∈Z
x = π/4 + πk/2,k∈Z
Перед тем, как начать отбирать корни, сначала попробуем определить, какое решение является более общим, то есть, какое решение вмещает в себя решения другого уравнения. Для этого приравняем обе формулы и выразим одну переменную через другую:
π/2 + πn = π/4 + πk/2
Выразим предположим n через k, так как это сделать намного проще:
πn = π/4 - π/2 + πk/2
n = 1/4 - 1/2 + k/2
n = -1/4 + k/2 = k/2 - 1/4
Проанализировав это равенство приходим к выводу, что k > n. Значит, второе решение включает в себя также первое решение, а потому, решение π/4 + πk/2 и является более общим. По этой формуле и будем производить отбор корней.
Впихнём эту формулу в заданный интервал и решим двойное неравенство относительно k.
-π/2 < π/4 + πk/2 ≤ π/2
-3π/4 < πk/2 ≤ π/4
Разделим всё неравенство на π/2, получаем:
-1.5 < k ≤ 1
Значит, при k= -1; 0; 1 получатся корни, принадлежащие данному промежутку. Теперь посдтавим просто k в нашу формулу и найдём эти корни:
k = 0 x = π/4
k = 1 x = π/4 + π/2 = 3π/4
k = -1 x = π/4 - π/2 = -π/4
Это корни, принадлежащие данному промежутку. Здаачу мы решили.
1. Функция, заданная формулой f(x) = ax² + bx + c , где x и f(x) - переменные, а "a, b, c" - некоторые числа числа, причем a≠0.
2. Графиком квадратичной функции является парабола.
3. xєR - х принадлежит множеству действительных чисел (-∞;∞).
4. [0;∞) - для у=х². но с изменением формулы графика, может поменяться область значений. Например: если а<0, то её ветви будут направлены вниз, и тогда область значений будет (-∞;0], но это не единственный фактор влияющий на область значений. На пример "х²-а"
график будет опущен на "а" вниз по Оси Оу и наоборот если х²+а, график будет приподнят на "а" по Оси Оу.
5. Квадратное неравенство – это такое неравенство, которое имеет вид ax²+bx+c<0 ax²+ bх+c < 0, где a, b и c – некоторые числа, причем а≠0.
6. ax²+bx+c.