Знаменатель дроби показывает на сколько ровных долей делят, а числитель-сколько таких долей взято.. Чтобы прибавить, или отнять дроби с разными знаменателями, мы приводим к наименьшему общему знаменателю, и прибавляем(или отнимаем) Если числитель и знаменатель дроби умножить или разделить на одно и тоже натуральное число, то получится равная ей дробь. Это значит разделить и числитель и знаменатель на одно и то же число, не равное нулю. Например дробь 2/4 сокращаем на два:1/2.5/10 сокращаем на 5=1/2 незнаю, наверное до бесконечности Дробь называют несократимой тогда, когда сократить эту дробь невозможно...
Чтобы прибавить, или отнять дроби с разными знаменателями, мы приводим к наименьшему общему знаменателю, и прибавляем(или отнимаем)
Если числитель и знаменатель дроби умножить или разделить на одно и тоже натуральное число, то получится равная ей дробь.
Это значит разделить и числитель и знаменатель на одно и то же число, не равное нулю. Например дробь 2/4 сокращаем на два:1/2.5/10 сокращаем на 5=1/2
незнаю, наверное до бесконечности
Дробь называют несократимой тогда, когда сократить эту дробь невозможно...
Сори, времени сейчас нет, дальше не могу решать..
Объяснение:
№1
система:
y=−3х. (уравнение 1)
x−y=16 (уравнение 2)
подставим первое уравнение во второе, получим:
х–(–3х)=16
х+3х=16
4х=16
х=4
найдем у, для этого подставим значение х в первое уравнение, получим:
у= –3*4
у=–12
ответ: х=4; у=(–12)
№2
система:
10x+2y=81 |:2
y=−2,5x (уравнение 1)
система:
5х+у=40,5
у=–2,5х
система:
у=–5х+40,5
у=–2,5х
Тогда найдем их пересечение:
–5х+40,5=–2,5х
–5х+2,5х=–40,5
–2,5х=–40,5
2,5х=40,5
х=16,2
найдем у, для этого значение х подставим в уравнение 1, получим:
у=–2,5*16,2
у=–40,5
ответ: точка с координатами (16,2 ; –40,5)