Условию будут удовлетворять числа: 91, 93, 95, 97, 99 (5 шт.) Вероятность: в) Если х=9, то у=9 Если х=8, то у=9 Получаем числа: 99, 89 (2 шт.) Вероятность: г) Если х=1, то у=1; 3 Если х=2, то у=1 Если х=3, то у=1 Числа: 11, 13, 21, 31 (4 шт.) Вероятность:
Пошаговое объяснение: Рассмотрим отдельно случай, когда а = 0. Имеем следующее уравнение: -2x = 10, имеющее единственный корень. Данное значение а нам не подходит.
Пусть а = -2. Имеем следующее уравнение:
0x² - (0+2)x +10 - 10 = 0; 10 = 10 ⇒ x - любое число. Корней бесконечно много, поэтому это значение параметра нам подходит.
Если а ≠ 0, то уравнение - квадратное и имеет больше одного корня, если его дискриминант D > 0.
11, 13, 15, ..., 99 - двузначные натуральные нечетные
Найдем их общее количество: последовательность является арифметической прогрессией, где:
чисел
а)
Нечетное число:
Числа, удовлетворяющие условию: 11, 13, ..., 31
Их количество:
Вероятность:
б)
Условию будут удовлетворять числа: 91, 93, 95, 97, 99 (5 шт.)
Вероятность:
в)
Если х=9, то у=9
Если х=8, то у=9
Получаем числа: 99, 89 (2 шт.)
Вероятность:
г)
Если х=1, то у=1; 3
Если х=2, то у=1
Если х=3, то у=1
Числа: 11, 13, 21, 31 (4 шт.)
Вероятность:
ответ: a ∈ (-1/40; 0)∪(0; +∞)∪{-2}.
Пошаговое объяснение: Рассмотрим отдельно случай, когда а = 0. Имеем следующее уравнение: -2x = 10, имеющее единственный корень. Данное значение а нам не подходит.
Пусть а = -2. Имеем следующее уравнение:
0x² - (0+2)x +10 - 10 = 0; 10 = 10 ⇒ x - любое число. Корней бесконечно много, поэтому это значение параметра нам подходит.
Если а ≠ 0, то уравнение - квадратное и имеет больше одного корня, если его дискриминант D > 0.
Найдем дискриминант:
D = (-(a+2))² - 4a(2a + 4)(-5a - 10) = a² + 4a + 4 + 4a(2a + 4)(5a
+ 10) = a²+ 4a + 4 + 4a(10a² + 20a + 20a + 40) = a² + 4a + 4 + 40a³ + 160a² + 160a = 40a³ + 161a² + 164a + 4 > 0.
40a³ + 161a² + 164a + 4 > 0
40a³ + a² + 160a² + 4a + 160a + 4 > 0
a²(40a + 1 ) + 4a(40a + 1) + 4(40a + 1) > 0
(40a + 1)(a² + 4a + 4)>0
(40a + 1)(a + 2)²> 0
40a+ 1 > 0 ⇒ a > -1/40.
Не забываем про a = -2 и а = 0, записываем ответ: a ∈ (-1/40; 0)∪(0; +∞)∪{-2}.