ответ: Первый кран наполнит пустую ванну за 18 минут; второй кран опорожнит полную ванну за 12 минут.
Пошаговое объяснение: Пусть вся ванна 1 (единица), а х минут это время за которое первый кран наполнит ванну, тогда время за которое второй кран опорожнит ванну, будет х-6 минут. Производительность первого крана на наполнение будет 1/х; производительность второго крана на опорожнение будет 1/(х-6) , а совместная производительность на опорожнение ванны 1/36. Составим уравнение:
1/(х-6) - 1/х = 1/36
36х-36(х-6)=х(х-6)
х²-6х-216=0
D=900
х₁=-12 (мин) не подходит, т.к. время не может быть отрицательным.
х₂=18 (мин) время за которое первый кран наполнит пустую ванну.
18-6=12 (мин) время за которое второй кран опорожнит полную ванну.
5^(x-2) = 5^0 2^(x² -3x +8) = 2^6
x-2 = 0 x² -3x +8 = 6
x = 2 x² -3x +2 = 0
2) 3·4^x =48 x = 1 и х = 2
4^x = 16 6)7^(2x-8)·7^(x+7) = 0
4^x = 4² нет решений
x=2 7)(0,2)^x ≤ 25·5√5
3)3^x=27·3√9 5^-x ≤ 5²·5·5^1/2
3^x = 3³·3·3 5^-x ≤5^3,5
3^x = 3^5 -x ≤ 3,5
x = 5 x ≥ -3,5
4)3^x + 3^(x +1) = 4 8)(1/2)^-x + 2^(3 +x) ≤9
3^x(1 +3) = 4 2^x +2^(3 +x) ≤ 9
3^x·4 = 4 2^x(1 +2^3) ≤ 9 | :9
3^x = 1 2^x ≤ 1
x = 0 2^x ≤2^0
x≤ 0
ответ: Первый кран наполнит пустую ванну за 18 минут; второй кран опорожнит полную ванну за 12 минут.
Пошаговое объяснение: Пусть вся ванна 1 (единица), а х минут это время за которое первый кран наполнит ванну, тогда время за которое второй кран опорожнит ванну, будет х-6 минут. Производительность первого крана на наполнение будет 1/х; производительность второго крана на опорожнение будет 1/(х-6) , а совместная производительность на опорожнение ванны 1/36. Составим уравнение:
1/(х-6) - 1/х = 1/36
36х-36(х-6)=х(х-6)
х²-6х-216=0
D=900
х₁=-12 (мин) не подходит, т.к. время не может быть отрицательным.
х₂=18 (мин) время за которое первый кран наполнит пустую ванну.
18-6=12 (мин) время за которое второй кран опорожнит полную ванну.
Подробнее - на -