Объяснение:
1. График функции на рисунке в приложении.
2. Пересечение с осью ОУ: Y(0) = +3 - ответ.
3. Пересечение с осью ОХ - решение квадратного уравнения.
Дано: y =2*x² -5*x+3 - квадратное уравнение.
Пошаговое объяснение:
a*x² + b*x + c = 0
Вычисляем дискриминант - D.
D = b² - 4*a*c = -5² - 4*(2)*(3) = 1 - дискриминант. √D = 1.
Вычисляем корни уравнения.
x₁ = (-b+√D)/(2*a) = (5+1)/(2*2) = 6/4 = 1,5 - первый корень
x₂ = (-b-√D)/(2*a) = (5-1)/(2*2) = 4/4 = 1 - второй корень
Нули функции: 1,5 и 1 - корни уравнения.
4. Поиск экстремума - оси симметрии по первой производной.
y'(x) = 4*x - 5 = 0
x = 1.25 - точка экстремума..
5. Положительна - ВНЕ КОРНЕЙ ПРОИЗВОДНОЙ.
y(X)>0 при x=(-∞;1)∪(1.5;+∞)
Отрицательна - между корнями производной.
y(x)≤0 при x=[1;1.5] - равна 0 - квадратные скобки.
Ymin(1.25) = = - 0.125 = - 1/8 - минимальное значение
заменим что x³-8x²=х²(x-8) поэтому
(x-8)(x²-7x-8)=х²(x-8)
одно решение x=8
сокращаем на (x-8), остается
x²-7x-8=х²
-7x-8=0
x=-8/7=
ответ: х₁=8 и
г) (2х + 7)(х² + 12х - 30) - 5х² = 2х²(х + 1)
раскрываем скобки
(2х + 7)(х² + 12х - 30) - 5х²=2x³+24x²-60x+7x²+84x-210-5x²=2x³+26x²+24x-210
аналогично 2х²(х + 1)=2x³+2x²
получаем
2x³+26x²+24x-210=2x³+2x²
2x³+26x²+24x-210-2x³-2x²=0
24x²+24x-210=0
4x²+4x-35=0
D=4²+4*4*35=4²(1+35)=4²6²
√D=4*6=24
x₁=(-4-24)/8=-28/8=-7/2=-3,5
x₂=(-4+24)/8=20/8=5/2=2,5
ответ: x₁=-3,5 и x₂=2,5
Объяснение:
1. График функции на рисунке в приложении.
2. Пересечение с осью ОУ: Y(0) = +3 - ответ.
3. Пересечение с осью ОХ - решение квадратного уравнения.
Дано: y =2*x² -5*x+3 - квадратное уравнение.
Пошаговое объяснение:
a*x² + b*x + c = 0
Вычисляем дискриминант - D.
D = b² - 4*a*c = -5² - 4*(2)*(3) = 1 - дискриминант. √D = 1.
Вычисляем корни уравнения.
x₁ = (-b+√D)/(2*a) = (5+1)/(2*2) = 6/4 = 1,5 - первый корень
x₂ = (-b-√D)/(2*a) = (5-1)/(2*2) = 4/4 = 1 - второй корень
Нули функции: 1,5 и 1 - корни уравнения.
4. Поиск экстремума - оси симметрии по первой производной.
y'(x) = 4*x - 5 = 0
x = 1.25 - точка экстремума..
5. Положительна - ВНЕ КОРНЕЙ ПРОИЗВОДНОЙ.
y(X)>0 при x=(-∞;1)∪(1.5;+∞)
Отрицательна - между корнями производной.
y(x)≤0 при x=[1;1.5] - равна 0 - квадратные скобки.
Ymin(1.25) = = - 0.125 = - 1/8 - минимальное значение