Точки построения графика: (0;0), (±1; ±1), (±2; ±8). График является нечетной.
Подставим координаты точки A(-5;125) в график уравнения, получим
Поскольку равенство не верно, то график функции y = x³ не проходит через точку A(-5;125), т.е. точка не принадлежит графику y = x³
Подставим теперь координаты точки B(4;64), получим
Поскольку равенство тождественно выполняется, то точка B принадлежит графику функции y = x³.
Подставим координаты точки C(-3;-27), имеем
Раз равенство тождественно выполняется, то точка C(-3;-27) принадлежит графику функции y = x³
1) OA = OC = OB = a
Треугольники ОАВ, ОАС и ОВС - прямоугольные с равными катетами, значит они равны по двум катетам. Значит, равны и их гипотенузы:
АВ = АС = ВС.
Треугольник АВС равносторонний, значит его углы равны по 60°.
2) OA = OB = 6 см, OC=8см
ΔОАС = ΔОВС по двум катетам. По теореме Пифагора в ΔОАС:
АС = √(ОА² + ОС²) = √(36 + 64) = √100 = 10 см
ВС = АС = 10 см
ΔОАВ равнобедренный прямоугольный. По теореме Пифагора
АВ = √(ОА² + ОВ²) = √(36 + 36) = 6√2 см
ΔАВС равнобедренный. По теореме косинусов найдем угол АСВ:
cosACB = (CA² + CB² - AB²)/(2·CA·CB) = (100 + 100 - 72)/(2·10·10) =
= 128/200 = 0,64
∠ACB ≈ 50°
∠CAB = ∠CBA ≈ (180° - 50°)/2 ≈ 65°
Точки построения графика: (0;0), (±1; ±1), (±2; ±8). График является нечетной.
Подставим координаты точки A(-5;125) в график уравнения, получим
Поскольку равенство не верно, то график функции y = x³ не проходит через точку A(-5;125), т.е. точка не принадлежит графику y = x³
Подставим теперь координаты точки B(4;64), получим
Поскольку равенство тождественно выполняется, то точка B принадлежит графику функции y = x³.
Подставим координаты точки C(-3;-27), имеем
Раз равенство тождественно выполняется, то точка C(-3;-27) принадлежит графику функции y = x³
1) OA = OC = OB = a
Треугольники ОАВ, ОАС и ОВС - прямоугольные с равными катетами, значит они равны по двум катетам. Значит, равны и их гипотенузы:
АВ = АС = ВС.
Треугольник АВС равносторонний, значит его углы равны по 60°.
2) OA = OB = 6 см, OC=8см
ΔОАС = ΔОВС по двум катетам. По теореме Пифагора в ΔОАС:
АС = √(ОА² + ОС²) = √(36 + 64) = √100 = 10 см
ВС = АС = 10 см
ΔОАВ равнобедренный прямоугольный. По теореме Пифагора
АВ = √(ОА² + ОВ²) = √(36 + 36) = 6√2 см
ΔАВС равнобедренный. По теореме косинусов найдем угол АСВ:
cosACB = (CA² + CB² - AB²)/(2·CA·CB) = (100 + 100 - 72)/(2·10·10) =
= 128/200 = 0,64
∠ACB ≈ 50°
∠CAB = ∠CBA ≈ (180° - 50°)/2 ≈ 65°