1. У равнобедренного треугольника углы при основании равны, поэтому угол при основании не может быть равен 108°, значит угол при вершине равнобедренного треугольника равен 108°, тогда углы при основании:
α = (180° - 108°)/2 = 36°
ответ: 36°.
2) Полное условие. В треугольнике CDE проведена биссектриса CF, угол D=68*,угол E=32*. Найдите угол CFD.
Сумма внутренних углов треугольника равна 180°, поэтому
∠C = 180° - (∠D + ∠E) = 180° - (68°+32°) = 100°
Так как CF - биссектриса, то ∠DCF = ∠FCE = 0.5∠C = 50°
Есть правило нахождении предела отношения дробно-рациональной функции при х---> к бескон.Если многочлен в числителе имеет степень, равную степени многочлена в знаменателе, то предел равен отношению коэффициентов перед СТАРШИМИ степенями.Доказывается это с деления числителя и знаменателя на старшую степень и учёта того, что константа, делённая на бесконечно большую велмчину равна 0 (беск.малой величине). В 1 примере старшая степень числителя первая и коэффициент перед ней равен 1.В знаменателе старш.степень первая и старший коэффю=1.Поэтому предел равен 1:1=1. Если решать пример с деления на старш.степень, то получим:
Конечно, удобнее пользоваться готовым правилом.
Если степень многочлена в числителе меньше степени многочлена в знаменателе, то предел будет равен 0. Если степень многочлена в числ. больше степени мног. в знаменателе, то предел равен бесконечности. Например:
1. У равнобедренного треугольника углы при основании равны, поэтому угол при основании не может быть равен 108°, значит угол при вершине равнобедренного треугольника равен 108°, тогда углы при основании:
α = (180° - 108°)/2 = 36°
ответ: 36°.
2) Полное условие. В треугольнике CDE проведена биссектриса CF, угол D=68*,угол E=32*. Найдите угол CFD.
Сумма внутренних углов треугольника равна 180°, поэтому
∠C = 180° - (∠D + ∠E) = 180° - (68°+32°) = 100°
Так как CF - биссектриса, то ∠DCF = ∠FCE = 0.5∠C = 50°
Рассмотрим треугольник CDF: ∠CFD = 180° - (∠CDF + ∠DCF)=62°
ответ: 62°
В 1 примере старшая степень числителя первая и коэффициент перед ней равен 1.В знаменателе старш.степень первая и старший коэффю=1.Поэтому предел равен 1:1=1. Если решать пример с деления на старш.степень, то получим:
Конечно, удобнее пользоваться готовым правилом.
Если степень многочлена в числителе меньше степени многочлена в знаменателе, то предел будет равен 0.
Если степень многочлена в числ. больше степени мног. в знаменателе, то предел равен бесконечности.
Например: